
Relational &
NoSQL Databases

CS 346: Application
Development

1

What is a database?
A database is a system for storing data
(often represented as records).
• Advantages over just storing data in files?

• It’s designed for working with large numbers
of records.

• Databases support efficient and complex
operations on your records.

• Facilitates data sharing across large numbers
of concurrent users/systems.

• There are many kinds of databases:
• Relational, Graph Databases, Document

Databases…
• We’ll focus on Relational and

NoSQL/Document.

2

Local vs. Remote Data
Databases can be stored locally (the same system as your application), or
remotely (over a network to a different system).
Local

• Often done when you don’t need to share data between applications or users.
• e.g., I have an application that stores my clipboard history. For practical reasons

(security, performance) I don’t need this shared with anyone else. The data is
stored in a local database.

Remote
• Done when you need to share data with other users or applications.
• e.g., messaging systems like Slack need to share data between users.

We’ll mostly ignore this distinction for now (and revisit when discussing
services/cloud). Just remember that you might use a local database for reasons
other than data sharing.

3

Relational Databases
Old-school, SQL databases. Still incredibly useful.

4

Introduction
Relational databases are based on the relational model proposed by Dr. E.F. Codd.
A relational database structures data into tables representing logical entities e.g. Customer and
Transaction tables. Records are stored as rows in each table.
• Relational databases are exceptional at storing and processing structured data. They are hugely

popular e.g., Oracle, SQL Server, PostgreSQL, MySQL, Supabase.

What are the benefits of relational databases?
1. Relational databases allow for very efficient data storage i.e. little redundancy.
2. Relational databases support operations on sets of records, which mirrors how we work. e.g.

• Fetch a list of all purchases greater than $100.
• Display customer_name for all customers that live in ”Ottawa”.

3. They are declarative, meaning that the DB performs named operations without you needing to
understand how they are implemented.

5

https://www.oracle.com/ca-en/database/technologies/
https://www.microsoft.com/en-ca/sql-server/sql-server-2022
https://www.postgresql.org/
https://www.mysql.com/
https://supabase.com/

Table
A table is the foundational concept. It collects related fields into records.
Roughly analogous to a class, with each row a record/instance.
e.g. Customer table contains customer information

• One record (row) per customer
• One field (column) for each property of that customer.

6

Field (Column) names

Records (Rows)

Data -> Tables

7

Primary Key

A key is a column that helps us identify a row or set of rows in a table.
A primary key is a column in a database with a value that uniquely identifies
each row. A table cannot normally have more than one primary key.

• cust_id is a unique identifier for each row in the customer table.
• Using “cust_id=1002” to filter any operation will force that operation to

only affect the “Marie Curie” record.

8

Foreign Keys
A foreign key is a key used to refer
to data being held in a different
table.
A primary key in one table is the
foreign key in a different table.
Customer table

• Primary key: cust_id
Transactions table

• Primary key: tx_id
• Foreign key: cust_id

9

Each transaction can be uniquely identified by the
primary key tx_id. It is linked to a unique customer
through cust_id.

Joins
A well-designed database avoids data duplication. This means that we
want to split unique entities into their own tables.
• e.g., a Customer record like “101, Jeff Avery, Waterloo, ON” would

be split apart:

10

- cust_id: Integer
+ name: String
+ city_id: Integer
+ prov_id: Integer

Customer - city_id: Integer
+ name: String

City

- prov_id: Integer
+ name: String

Province

101,
Jeff Avery,
233,
5

231, Wallaceburg
232, Washago
233, Waterloo
…

3. Saskatchewan
4. Manitoba
5. Ontario
…

Joins
A join describes how to relate data across tables using keys. We split data for
efficiency but joins lets us reassemble records when we need that information again.

11

ACID
In computer science, ACID (atomicity, consistency, isolation, durability) is a set of
properties intended to guarantee data validity despite errors, power failures, and
other mishaps.
• Atomicity prevents updates to the database from occurring only partially.
• Consistency guarantees that transaction can move database from one valid

state to the next. This ensures these all adhere to all defined database
rules. Also preventing corruption by illegal transaction.
• Isolation determines how a particular action is shown to other concurrent

system users.
• Durability is the property that guarantees that transactions that have been

committed will survive permanently.

12

Transactions
Transactions ensure ACID properties.
• We treat multiple actions that are being performed as a single unit of

work called a transaction.
• All changes are performed together (atomic).
• If there is any error in performing any of those actions, we undo all of these

actions. We commit everything, or rollback everything.

• How do you use this? You “start” a transaction when you perform an
operation and “commit” when you are done.
• This is often done implicitly – details will vary by database/library (so check!)

• This is how we can handle two or more users are updating the same
data at the same time and ensure consistency of data.

13

SQL – manipulating Data
SQL (pronounced ”Ess-que-ell”) is a Domain-Specific Language (DSL) for
describing your queries. Using SQL, you write statements describing the
operation to perform, against which tables, and the database performs the
operations for you.
• SQL is a standard1, so SQL commands work the same way across different

relational databases. You can use it to:
• Create new records
• Retrieve sets of existing records
• Update the fields in one or more records
• Delete one or more records

• ———
• 1. SQL was adopted by ANSI in 1986 as SQL-86, and by ISO in 1987.

14

You can also choose to use
libraries which perform

actions without SQL. This is
still a great model for
thinking about what

operations to perform.

SQL Syntax

SQL has a particular syntax for managing sets of records:

 <operation> (FROM) [table] [WHERE [condition]]
 operations: SELECT, UPDATE, INSERT, DELETE, ...
 conditions: [col] <operator> <value>

You issue English-like sentences describing what you intend to do.
• SQL is declarative: you describe what you want done, but don’t need

to tell the database how to do it.
• There’s also a relatively small number of operations to support.

15

Create: Add new records

INSERT adds new records to your database.

INSERT INTO Customer(cust_id, name, city)
 VALUES (1005, “Molly Malone", "Kitchener")

INSERT INTO Customer(cust_id, name, city)
 VALUES (1005, “April Ludgate", "Kitchener") // problem?

16

Retrieve: Display existing records

SELECT returns data from a table, or a set of tables. NOTE: Asterix (*) is a
wildcard meaning “all”.

SELECT * FROM Customers
--> returns ALL data

SELECT * FROM Customers WHERE city = "Ottawa"
-- > {"cust_id"1003, "name":"Billy Bishop", "city":"Ottawa")

SELECT name FROM Customers WHERE custid = 1001
--> "Jeff Avery"

17

Update: Modify Existing Records

UPDATE modifies one or more fields based in every row that matches the
criteria that you provide.
If you want to operate on a single row, you need to use a WHERE clause to
give it some criteria that makes that row unique.

UPDATE Customer SET city = "Kitchener" WHERE cust_id = 1001
—> updates one record since cust_id is unique for each row

UPDATE Customer SET city = "Kitchener" // uh oh
—> no “where” clause, so we change all records to Kitchener.

18

Delete: Remove records

DELETE removes every record from a table that matches the criteria
that you provide.
If you want to operate on a single row, you need to use a WHERE clause
to give it some criteria that makes that row unique.

DELETE FROM Customer WHERE cust_id = 1001
—> deletes one matching record since cust_id is unique

DELETE FROM Customer// uh oh
—> deletes everything from this table

19

Filtering with a “Where” clause

A where clause allows us to filter a set of records.

UPDATE Customer SET city = "Kitchener" WHERE cust_id = 1001
—> updates one record since cust_id is unique for each row

WHERE also allows us to define relations between tables.
This means that we can start to run more complex queries across
multiple tables.

20

$ SELECT c.customer_id, c.first_name + “ “ + c.last_name, t.date, p.name, p.cost
FROM Customer c, Transactions t, Products p
WHERE c.customer_id = t.customer_id
AND t.product_id = p.product_id

$ 1001, Jeff Avery, 12-Aug-2020, T-shirt, 29.95

21

Types of Joins (Syntax)

22

Accessing SQL Databases in Kotlin
Kotlin leverages the Java JDBC API (”Java DataBase Connectivity”). This
provides a standard mechanism for connecting to databases, issuing queries,
and managing the results. To create a database project in IntelliJ:
1. Create a Gradle/Kotlin project.
2. Modify the build.gradle.kts to include a dependency on a suitable JDBC for your
specific database (e.g. MySQL, PostgreSQL, SQLite).

implementation(“org.xerial:sqlite-jdbc:3.39.3.0”) // example of SQLite

3. Use the Java SQL package classes to connect and fetch data.

java.sql.Connection
java.sql.DriverManager
java.sql.SQLException

23

Creating a connection

24

This example uses a sample database from the SQLite tutorial.
We first create a connection to the database. The URL designates both the type of
database, and location of the local database file.

fun connect(): Connection? {
 var conn: Connection? = null
 try {
 val url = "jdbc:sqlite:chinook.db” // format varies by driver
 conn = DriverManager.getConnection(url)
 println("Connection to SQLite has been established.")
 } catch (e: SQLException) {
 println(e.message)
 }
 return conn

}

Running a Query

25

fun query(conn:Connection?) {
 try {
 if (conn != null) {
 val sql = "select albumid, title, artistid from albums where albumid < 5"
 val query = conn.createStatement()
 val results = query.executeQuery(sql)
 println("Fetched data:");
 while (results.next()) {
 val albumId = results.getInt("albumid")
 val title = results.getString("title")
 val artistId = results.getInt("artistid")
 println(albumId.toString() + "\t" + title + "\t" + artistId)
 }
 }
 } catch (ex: SQLException) {
 println(ex.message)
 }
}

Connection to SQLite has been established.
Fetched data:
1 For Those About To Rock We Salute You. 1
2 Balls to the Wall 2
3 Restless and Wild 2
4 Let There Be Rock 1
Connection closed.

DB Abstraction
JDBC is a useful mechanism for connecting to remote databases, but making raw
SQL calls is error-prone: there's no type checking, or other safety mechanisms in-
place. It also requires us to explicitly convert between string data and class objects
that are holding our data.
• There are several libraries that abstract the complexities JDBC and provide a

cleaner database interface. Popular ones include:
• Exposed is a JetBrains Kotlin library for working with JDBC databases. It works

great with desktop applications (local or remote).
• Room is an Android library for working with SQLite databases (usually locally).

26

https://github.com/JetBrains/Exposed
https://developer.android.com/training/data-storage/room

Exposed

Exposed is a framework that provides a cleaner interface for working
with JDBC. It provides two approaches:
• typesafe SQL wrapping DSL, or
• lightweight Data Access Objects (DAO).

It works through JDBC and supports most popular databases (incl.
SQLite, H2, Oracle, Postgres…)

• https://github.com/JetBrains/Exposed

27

https://github.com/JetBrains/Exposed

Exposed Example (1/2)

object CoursesTable : Table() {
 val courseID: Column<String> = varchar("course_id", length = 10)
 val term: Column<Int> = integer("term")
 val termName: Column<String> = varchar("term_name", length = 50)
 val subject: Column<String> = varchar("subject", length = 10)
 val catalogNumber: Column<String> = varchar("catalog_number", length = 10)
 val title: Column<String> = varchar("title", length = 100)
 val description: Column<String> = varchar("description", length = 1024)
 val requirements: Column<String> = varchar("requirements", length = 1024)
 override val primaryKey = PrimaryKey(courseID, name = "pk_course_id")
}

private fun createTables() {
 transaction {
 SchemaUtils.create(CoursesTable, SectionsTable)
 }
}

28

https://git.uwaterloo.ca/j2avery/courses

https://git.uwaterloo.ca/j2avery/courses

Exposed Example (2/2)

fun addCourse(course: Course) {
 transaction {
 CoursesTable.insert {
 it[courseID] = course.courseID
 it[term] = course.term
 it[termName] = course.termName
 it[subject] = course.subject
 it[catalogNumber] = course.catalogNumber
 it[title] = course.title
 it[description] = course.description
 it[requirements] = course.requirements ?: ""
 }
 }
}

29

No-SQL Databases
The highly scalable alternative.

30

Introduction
No-SQL is a very broad category, which can either mean "Not Only SQL" or
"No SQL". These databases are designed to handle data that doesn't fit well
into the traditional relational model (typically non-structured data, where
records may have different structures)
• Types of No-SQL databases include:

• Document databases (e.g. MongoDB, Google Cloud Firestore)
• Key-value stores (e.g. Redis)
• Graph databases (e.g. Neo4j)
• Time-series databases (e.g. InfluxDB)

NoSQL databases are popular in large-data scenario, where you may need to
process extremely large amounts of data and/or your data will grow significantly
over time.

31

32

SQL databases are often scaled-up as data needs increase (more
memory, processing on the same system). NoSQL databases can be

scaled out (distributed across more systems).

https://www.mongodb.com

https://www.mongodb.com/resources/basics/databases/nosql-explained/nosql-vs-sql

Document Databases

A document database is a type of NoSQL database that can be used to store and
query data as JSON-like documents.
Why is this a useful paradigm?

• Easy to develop! Objects (code) map to JSON (data format), which you can
then easily store directly in the database.

• Flexible schema. You can add fields to a document at any time.
• Scales out very well if needed for large, distributed systems.

We’ll use MongoDB as an example. See MongoDB Community Edition.
Firestore is also popular for Android development. See Firebase Documentation.

33

https://www.mongodb.com/products/self-managed/community-edition
https://firebase.google.com/docs/firestore/quickstart

Mongo DB

• Can be installed locally, but more often used in
the cloud (where they host it for you).

• Exclusively a document database
• NO table structure
• JSON documents instead, with flexible structure.

• How do you query it?
• No SQL!
• Mongo has a proprietary API that you can use, with a

custom driver.
• Same operations you would expect (CRUD).

34

See Getting Started with
the MongoDB Kotlin
Driver.

https://www.mongodb.com/developer/products/mongodb/getting-started-kotlin-driver/
https://www.mongodb.com/developer/products/mongodb/getting-started-kotlin-driver/
https://www.mongodb.com/developer/products/mongodb/getting-started-kotlin-driver/

Adding Mongo Dependency

35

Add the drivers to your build.gradle.kts file.

dependencies {
 // Kotlin coroutine dependency
 implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.4")

 // MongoDB Kotlin driver dependency
 implementation("org.mongodb:mongodb-driver-kotlin-coroutine:4.10.1")
}

Working with Data

To use the hosted solution, you need to:
1. Setup an account and an online cluster that you can use (free is fine!)
2. Use the connection details to connect to the database from your code.

val connectionString = "mongodb+srv://<username>:<enter your
password>@cluster0.sq3aiau.mongodb.net/?retryWrites=true&w=majority"
val client = MongoClient.create(connectionString = connectString)

See Getting Started with the Kotlin Driver for setup.

36

https://www.mongodb.com/developer/products/mongodb/getting-started-kotlin-driver/

37

suspend fun setupConnection(
 databaseName: String = "sample_restaurants",
 connectionEnvVariable: String = "MONGODB_URI"
): MongoDatabase? {
 val connectString = "mongodb+srv://<usename>:<password>@cluster0.sq3aiau.mongodb.net"
 }

 val client = MongoClient.create(connectionString = connectString)
 val database = client.getDatabase(databaseName = databaseName)
 return try {
 // Send a ping to confirm a successful connection
 val command = Document("ping", BsonInt64(1))
 database.runCommand(command)
 println("Pinged your deployment. You successfully connected to MongoDB!")
 database
 } catch (me: MongoException) {
 System.err.println(me)
 null
 }
}

https://www.mongodb.com/developer/products/mongodb/getting-started-kotlin-driver/

https://www.mongodb.com/developer/products/mongodb/getting-started-kotlin-driver/

Choosing a Database System
What to choose? What things to consider.

38

What should you choose?
Your choice of database depends on a few factors:

• SQL or No-SQL – choose based on your data needs
• SQL is much better for structured data (i.e., you can query it, sort it).

• Local or hosted (cloud) – do you need to share data?
• If you pick local, you will need to distribute it with your application.
• If you pick cloud, you need to be concerned with security and connectivity.

39

SQL Databases Local Cloud

Android SQLite Supabase

Desktop SQLite Supabase

NoSQL Databases Local Cloud

Android (ScyllaDB, Cassandra) Firebase

Desktop (ScyllaDB, Cassandra) MongoDB

