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Introduc)on
Dr. Jeffery Avery
• Associate Professor, Teaching Stream
• Cheriton School of Computer Science
• Teaches CS 346 & CS 349

Caroline Kierstead
• InstrucFonal Support Coordinator

Teaching Assistants x 6
• See website

Prof. Avery aka “Jeff”

jeffery.avery@uwaterloo.ca
MC 6461
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Follow 
along!
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Course Overview
What are we going to be doing this term?
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Course Description
CS 346 Applica-on Development
LAB, LEC, TST 0.50

Introduc-on to full-stack applica-on design and development. 
Students will work in project teams to design and build complete, 
working applica-ons and services using standard tools. Topics include 
best prac-ces in design, development, tes-ng, and deployment.

Prerequisites: CS 246; Computer Science students only.
hMps://student.cs.uwaterloo.ca/~cs346/1259/
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This is a course about building “applications” -- software that solves problems for people. 
Most of the software that you use on day-to-day basis are considered applications.

Applica)on Development

ApplicaGon soHware tends to be:
• Focused on providing value for a person.
• InteracGve and graphical.

• e.g., calculator, MS Word, Fortnite.
• Tends to be very personalized.

• Installed on personal devices.
• Save profiles/preferences.
• Personal data (confidenGal?)

Contrasts with other types of soHware:
• Embedded -- controls hardware systems.
• System soHware -- provides services for 

other soHware.
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Console
C++ (Python, C)
ImperaIve

Desktop
Pascal, C++, VB
Object-Oriented
Graphics
Databases

Web
Java, JS, HTML/CSS
FuncIonal
Databases
Networking
Concurrency

Mobile
Kotlin, Swi[
OO & FuncIonal
Graphics
Databases
Networking
Concurrency

1950s - 1960s                   1970s – 1980s                       1990s– 2000s     2010s – 2020s
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What Are We Building?
You and your team will pick a project that you think will be 
interes7ng, and which expertly solves a problem for users. 

Requirements
• Graphical applica-on, desktop (Windows, macOS, Linux) or Android.
• Your applica-on should be reasonably complex and challenge your team.
• You must define which features to implement. They should excel in 

solving the problem you have iden-fied.

Technical Requirements
• Kotlin programming language, Gradle for builds.
• Need to use an online Web API (service).
• Also need to store data in a SQL database. 

We will discuss 
requirements in 
more detail in 

Week 2
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A great team can accomplish amazing things together. 
• This project will be too complex for a single person. 
• It’s a chance to improve teamwork and leadership skills.
• You can also learn to how to “code together” (branching, merging, wriFng 

meaningful documentaFon).
• You work together to choose a project, make design decisions, and help one 

another in the implementaFon.

Teams need to be four people
• Everyone registered in the same secFon.
• Physically present during the term.

Collaborative Development
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Past Projects
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Typically, 90% design Android applicaFons, 10% desktop. 

Examples
• Recipe Keeper: a made-up recipe sharing applicaFon.
• So[ware Design Tool: a tool to collaborate on UML diagrams.

Past Projects
• WatCourse: a course planner that lets you build a class schedule.
• FlickPicks: rate movies and share movie reviews with friends.
• Roomie: track chores (assign work to your housemates!)
• Washare: share a car-washing card & subscripFon.

https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
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Why take this course?
• Technical skills

• Kotlin programming.
• FuncFonal + OO paradigms.
• Databases, User interfaces, Concurrency.

• SoSware engineering
• So[ware Architecture, Design, TesFng.
• How to use standard development pracFces.

• Teamwork
• How to be effecFve on a team.
• Leadership, responsibility.
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I was going to place “pillars of 
knowledge” under these headings, 
but that seemed too cheesy, even 

for me.



Course Structure
Let’s discuss how the course is put together!
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Class Structure

Wednesday (Lecture)
• 1h 20m lectures + 30 min free
• Regular lectures e.g., soHware architecture, concurrency, user interfaces.

Friday (Lab)
• 20 min demo/Q&A + 1h 30m free
• Time to work on your project.
• TAs and instructor present to answer quesGons and help!
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Term Structure
Week Day Topics

Week 01 Wed LEC Introduction. Teamwork. Project details. 

Fri LAB Setup GitLab. How to add documentation. 

DUE Nothing due in week 01. Find a team!

Week 02 Wed LEC Software engineering. Determining requirements.

Fri LAB Entering requirements in GitLab. 

DUE Project Setup due Fri @ 6:00 PM

Week 03 Wed LEC Learning Kotlin

Fri LAB Install the toolchain. Setup the Git repository.

DUE Quiz 1 (Weeks 1-2) due Fri @ 6:00 PM

See Schedule for the entire term.

1h 30m

20m
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Project Structure
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Deliverable What is it? Date

Project Setup Form your team, Setup your project space. Week 02

Project Proposal Pitch your product idea to your TA! Week 04

Sprint 1 Architecture, Core classes, Unit tests. Week 06

Sprint 2 UI prototypes and working user interface. Week 09

Sprint 3 Database working, Cloud functional. Week 11

Sprint 4 Final release, all features complete. Week 13

Final release Final software package + documentation. Week 14



Assessment
There are individual grade 
items, but most of your 
grade comes from team 
activities.

Deadlines every 2 weeks
• Submit what’s completed
• Demo to your TA 

(feedback!)

Everyone participates! 
• You get a zero for a missed 

component.
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General Policies
• Illness

• You must submit a VIF, email the instructor, and coordinate with your team. A 
missing component grade will be redistributed across other components.

• Short-term absences
• STA cannot be used for team deliverables i.e. demos, final submission. It can 

be used for quizzes, which would shift the weight of the quiz you missed.

• Exams & INC
• This course has no final exam and an INC will never be granted for missing 

team deliverables. Other policies would apply – see next slide.
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Team Policies
• You must form teams by the end of week 2. 

• We will help, but you are responsible for finding a team.
• You will have time after-class to match with teams. See Piazza as well.

• You cannot take this course while on a (remote) work term. 
• You must be physically present to meet with your team & attend class. 
• You cannot take it remotely and “call in” for demos.

• You need to physically attend and participate in team demos. 
• You will receive a grade of zero for a deliverable if you don’t participate 

in the demo.
• In extreme cases, we can remove you from the course or adjust your 

final grade (down) if you repeatedly fail to engage.
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Code Policies
• “Borrowed Code”

• You may use external code (up to 25 lines) with appropriate citation
• You cannot use projects from previous offerings of this course. 
• You cannot use any portion of a project from a different course 

• e.g., CS 446 or CS 449 are also project courses. You cannot normally submit the same 
project in two different courses.

• Generative AI / LLMs
• Can be used for code analysis. e.g., ”Gemini, what does this code do?”
• If used to generate code, it should be treated like any other source. i.e., must 

be documented, subject to restrictions like any other citation.
• Cannot use an LLM to generate more than this!
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Week 01: Introduction
• Wed lecture (today)

• Introduction
• Course website
• Teamwork
• Meet people and form teams

• Fri lab
• Forming and registering teams
• Setting up your project space
• How to write project documentation 
• Free time for teams to work ahead 
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