
Welcome!
CS 346 Applica-on Development

h6ps://student.cs.uwaterloo.ca/~cs346/1259/

https://student.cs.uwaterloo.ca/~cs346/1259/

Introduc)on
Dr. Jeffery Avery
• Associate Professor, Teaching Stream
• Cheriton School of Computer Science
• Teaches CS 346 & CS 349

Caroline Kierstead
• InstrucFonal Support Coordinator

Teaching Assistants x 6
• See website

Prof. Avery aka “Jeff”

jeffery.avery@uwaterloo.ca
MC 6461

2

https://student.cs.uwaterloo.ca/~cs346
mailto:jeffery.avery@uwaterloo.ca

h"ps://student.cs.uwaterloo.ca/~cs346/1259
3

Follow
along!

https://student.cs.uwaterloo.ca/~cs346/1259
https://student.cs.uwaterloo.ca/~cs346/1259
https://student.cs.uwaterloo.ca/~cs346/1259

Course Overview
What are we going to be doing this term?

4

Course Description
CS 346 Applica-on Development
LAB, LEC, TST 0.50

Introduc-on to full-stack applica-on design and development.
Students will work in project teams to design and build complete,
working applica-ons and services using standard tools. Topics include
best prac-ces in design, development, tes-ng, and deployment.

Prerequisites: CS 246; Computer Science students only.
hMps://student.cs.uwaterloo.ca/~cs346/1259/

5

https://student.cs.uwaterloo.ca/~cs346/1259/

This is a course about building “applications” -- software that solves problems for people.
Most of the software that you use on day-to-day basis are considered applications.

Applica)on Development

ApplicaGon soHware tends to be:
• Focused on providing value for a person.
• InteracGve and graphical.

• e.g., calculator, MS Word, Fortnite.
• Tends to be very personalized.

• Installed on personal devices.
• Save profiles/preferences.
• Personal data (confidenGal?)

Contrasts with other types of soHware:
• Embedded -- controls hardware systems.
• System soHware -- provides services for

other soHware.
6

Console
C++ (Python, C)
ImperaIve

Desktop
Pascal, C++, VB
Object-Oriented
Graphics
Databases

Web
Java, JS, HTML/CSS
FuncIonal
Databases
Networking
Concurrency

Mobile
Kotlin, Swi[
OO & FuncIonal
Graphics
Databases
Networking
Concurrency

1950s - 1960s 1970s – 1980s 1990s– 2000s 2010s – 2020s

7

Styles of Applica)ons

What Are We Building?
You and your team will pick a project that you think will be
interes7ng, and which expertly solves a problem for users.

Requirements
• Graphical applica-on, desktop (Windows, macOS, Linux) or Android.
• Your applica-on should be reasonably complex and challenge your team.
• You must define which features to implement. They should excel in

solving the problem you have iden-fied.

Technical Requirements
• Kotlin programming language, Gradle for builds.
• Need to use an online Web API (service).
• Also need to store data in a SQL database.

We will discuss
requirements in
more detail in

Week 2

8

A great team can accomplish amazing things together.
• This project will be too complex for a single person.
• It’s a chance to improve teamwork and leadership skills.
• You can also learn to how to “code together” (branching, merging, wriFng

meaningful documentaFon).
• You work together to choose a project, make design decisions, and help one

another in the implementaFon.

Teams need to be four people
• Everyone registered in the same secFon.
• Physically present during the term.

Collaborative Development

9

Past Projects

10

Typically, 90% design Android applicaFons, 10% desktop.

Examples
• Recipe Keeper: a made-up recipe sharing applicaFon.
• So[ware Design Tool: a tool to collaborate on UML diagrams.

Past Projects
• WatCourse: a course planner that lets you build a class schedule.
• FlickPicks: rate movies and share movie reviews with friends.
• Roomie: track chores (assign work to your housemates!)
• Washare: share a car-washing card & subscripFon.

https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/

https://student.cs.uwaterloo.ca/~cs346/1259/project/examples/
https://student.cs.uwaterloo.ca/~cs346/1259/project/examples/
https://student.cs.uwaterloo.ca/~cs346/1259/project/examples/
https://student.cs.uwaterloo.ca/~cs346/1259/project/examples/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/
https://student.cs.uwaterloo.ca/~cs346/1259/project/project-gallery/

Why take this course?
• Technical skills

• Kotlin programming.
• FuncFonal + OO paradigms.
• Databases, User interfaces, Concurrency.

• SoSware engineering
• So[ware Architecture, Design, TesFng.
• How to use standard development pracFces.

• Teamwork
• How to be effecFve on a team.
• Leadership, responsibility.

11

I was going to place “pillars of
knowledge” under these headings,
but that seemed too cheesy, even

for me.

Course Structure
Let’s discuss how the course is put together!

12

Class Structure

Wednesday (Lecture)
• 1h 20m lectures + 30 min free
• Regular lectures e.g., soHware architecture, concurrency, user interfaces.

Friday (Lab)
• 20 min demo/Q&A + 1h 30m free
• Time to work on your project.
• TAs and instructor present to answer quesGons and help!

13

Term Structure
Week Day Topics

Week 01 Wed LEC Introduction. Teamwork. Project details.

Fri LAB Setup GitLab. How to add documentation.

DUE Nothing due in week 01. Find a team!

Week 02 Wed LEC Software engineering. Determining requirements.

Fri LAB Entering requirements in GitLab.

DUE Project Setup due Fri @ 6:00 PM

Week 03 Wed LEC Learning Kotlin

Fri LAB Install the toolchain. Setup the Git repository.

DUE Quiz 1 (Weeks 1-2) due Fri @ 6:00 PM

See Schedule for the entire term.

1h 30m

20m

14

https://student.cs.uwaterloo.ca/~cs346/1259/schedule/

Project Structure

15

Deliverable What is it? Date

Project Setup Form your team, Setup your project space. Week 02

Project Proposal Pitch your product idea to your TA! Week 04

Sprint 1 Architecture, Core classes, Unit tests. Week 06

Sprint 2 UI prototypes and working user interface. Week 09

Sprint 3 Database working, Cloud functional. Week 11

Sprint 4 Final release, all features complete. Week 13

Final release Final software package + documentation. Week 14

Assessment
There are individual grade
items, but most of your
grade comes from team
activities.

Deadlines every 2 weeks
• Submit what’s completed
• Demo to your TA

(feedback!)

Everyone participates!
• You get a zero for a missed

component.
16

General Policies
• Illness

• You must submit a VIF, email the instructor, and coordinate with your team. A
missing component grade will be redistributed across other components.

• Short-term absences
• STA cannot be used for team deliverables i.e. demos, final submission. It can

be used for quizzes, which would shift the weight of the quiz you missed.

• Exams & INC
• This course has no final exam and an INC will never be granted for missing

team deliverables. Other policies would apply – see next slide.

17

https://student.cs.uwaterloo.ca/~cs346/1259/syllabus/policies/

https://student.cs.uwaterloo.ca/~cs346/1259/syllabus/policies/
https://student.cs.uwaterloo.ca/~cs346/1259/syllabus/policies/
https://student.cs.uwaterloo.ca/~cs346/1259/syllabus/policies/

Team Policies
• You must form teams by the end of week 2.

• We will help, but you are responsible for finding a team.
• You will have time after-class to match with teams. See Piazza as well.

• You cannot take this course while on a (remote) work term.
• You must be physically present to meet with your team & attend class.
• You cannot take it remotely and “call in” for demos.

• You need to physically attend and participate in team demos.
• You will receive a grade of zero for a deliverable if you don’t participate

in the demo.
• In extreme cases, we can remove you from the course or adjust your

final grade (down) if you repeatedly fail to engage.

18

Code Policies
• “Borrowed Code”

• You may use external code (up to 25 lines) with appropriate citation
• You cannot use projects from previous offerings of this course.
• You cannot use any portion of a project from a different course

• e.g., CS 446 or CS 449 are also project courses. You cannot normally submit the same
project in two different courses.

• Generative AI / LLMs
• Can be used for code analysis. e.g., ”Gemini, what does this code do?”
• If used to generate code, it should be treated like any other source. i.e., must

be documented, subject to restrictions like any other citation.
• Cannot use an LLM to generate more than this!

19

Week 01: Introduction
• Wed lecture (today)

• Introduction
• Course website
• Teamwork
• Meet people and form teams

• Fri lab
• Forming and registering teams
• Setting up your project space
• How to write project documentation
• Free time for teams to work ahead

20

✔

https://student.cs.uwaterloo.ca/~cs346/1259/lectures/agenda/
https://student.cs.uwaterloo.ca/~cs346/1259/lectures/agenda/
https://student.cs.uwaterloo.ca/~cs346/1259/getting-started/project-team/
https://student.cs.uwaterloo.ca/~cs346/1259/getting-started/project-team/
https://student.cs.uwaterloo.ca/~cs346/1259/getting-started/project-setup/
https://student.cs.uwaterloo.ca/~cs346/1259/getting-started/project-setup/
https://student.cs.uwaterloo.ca/~cs346/1259/getting-started/project-setup/
https://student.cs.uwaterloo.ca/~cs346/1259/getting-started/project-setup/
https://student.cs.uwaterloo.ca/~cs346/1259/reference/best-practices/documentation/
https://student.cs.uwaterloo.ca/~cs346/1259/reference/best-practices/documentation/

