
Software Architecture
CS 346 Application

Development

1

What is architecture?

Expert developers working on a project have a shared understanding of the system
design. This shared understanding is called ‘architecture’ and includes how the
system is divided into components and how the components interact through
interfaces.

— Martin Fowler, Who Needs an Architect? (2003).

Architecture is the holistic understanding of how your software is structured, and
the effect that structure has on its characteristics and qualities.
Architecture as a discipline suggests that structuring software should be
a deliberate action.

2

https://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf

Why is it important?

Decisions like “how to divide a system into components” have a huge impact on the
characteristics of the software that you produce.
• Architectural decisions like this are necessary for your software to work properly.
• The structure of your software will determine how well it runs, how quickly it

performs essential operations, how it handles errors.
• Well-designed software can be a joy to work with; poorly-designed software is

frustrating to work with, difficult to evolve and change.

3

Architecture supports requirements

Functional requirements are related to the functionality of
your application. These are often what users are talking about
in user stories. e.g., “save a file”, “display a sales report”.
Non-functional requirements refer to the qualities of our
software. e.g., scalability, robustness, power-usage, speed,
efficiency.
• User will often ask for non-functional requirements in

general terms. e.g., “I want this operation to be fast!”; “I
don’t want the app to use very much memory.”

• To address these requirements, we may need to quantify
them and measure them to know if they have been
achieved.

4

Defined during our
requirements process.
Explicitly designed.

Emerge from our
architecture, based on
design decisions that
we make.

Qualities
What are the properties and qualities of “correct” software?

5

Software qualities that developers care about
Goals as software developers:
• Usability: Our software is “fit for purpose” and meets functional

requirements. It should address our user stories and problem statement.
• Extensibility: Over time, we should be able to extend existing functionality

or add new functionality. e.g., adding a new file format.
• Scalability: Our software should be scalable to increased demand e.g., more

users, more transactions, at a faster rate.
• Robustness: Our software should be stable and handle uncertain inputs.
• Reusability: We should reuse design/code whenever possible and design

our solution in a way that fosters reuse. (However, beware YAGNI).

6

Software qualities that customers care about
Goals as users of a system:
• Performance: Does the system return results to users in a reasonable time?
• Reliability: Do the system features behave as expected?
• Availability: Can the system deliver its services when requested by users?
• Security: Does the system protect itself & data from unauthorized access?
• Usability: Can system users easily and quickly access features?
• Maintainability: Can the system be readily updated and new features

added without undue costs?
• Resilience: Can the system deliver services in the event of a failure?

7

Focusing on one quality will often affect other qualities.
• Improving reliability may reduce performance or

responsiveness (+reliability, -performance).
• Improving security may require adding security features,

which reduce usability for users (+security, -usability).
• Design entails compromise. Which outcome is preferable?

Example
• A system may share a database between components.
• Assume C1 runs slowly because it must reorganize the

information in the database before using it.
• Changes that help C1 may negatively affect C2.

Trade-offs between qualities

8

Sharing a database between
two components may slow

down performance.

This diagrams shows a different architecture where
each component has its own copy of the parts of the
database that it needs.
• If one component needs to change the database

organization, this does not affect the other
component (+maintainability)

However, a multi-database architecture may run more
slowly and may cost more to implement and change.
• A multi-database architecture needs a mechanism

(component C3) to ensure that the data shared by C1
and C2 is kept consistent when it is changed.

• This reduces performance (-performance).

Example: Maintainability & Performance

9

This design improves maintainability
but will probably perform worse than

the shared database.

Architectural Principles
How do we achieve these goals?

10

There are well-known approaches that we
can take to produce code that is
• Flexible
• Extensible
• Robust
• Reusable

There is no “magic bullet” solution; you will
need apply these principles to your specific
project.
Our goal is for you to recognize and learn
to apply these principles.

11- Oliver Vogel et al. 2011. Software Architecture. Springer.

Architecture principles

Single Responsibility (SRP)

Your architecture should consist of components.
• Each component is a relatively independent software entity that

implements a coherent set of functionality e.g., class, library.
• This responsibility should be clearly defined and should not extend outside

of this component (as much as possible).
• Components can be classes, or functions, or module. It’s “loosely defined”

on purpose.

Benefits
• Clearly defined roles results in “cleaner” code that is easier to read,

maintain and test.

12

Separation of concerns states that your components
should be independent of one another. We express this in
terms of of cohesion and coupling:
• High cohesion within a component i.e. each component

is self-contained with clear responsibilities.
• Loose coupling between components i.e. they should be

self-reliant and there should be few dependencies
between them.

Benefits
• Clear separation == stable APIs (between components).
• Changes tend to me isolated, and don’t “spread” as far.

Separation of concerns

13

Information Hiding

Information hiding is the idea that a component’s state should not be exposed.
• State should be internal and private.
• Components should provide a well-described interface that exposes public

functionality. Other components MUST use this interface to communicate.

Information hiding is a necessary part of separation of concerns.

14

Modularity

Modularity refers to the logical grouping of source code into related
groups i.e. it’s the structure that we want when we talk about
separation of concerns.
• e.g., namespaces in C++.

Why is it important?
• Clarity and simplicity of our code.
• Supports a clear division of responsibilities.
• Opportunities for code reuse.

15

Distribution Patterns
High-level component distribution.

16

The distribution architecture of a software system defines the distribution of
your application across physical hardware. In a distributed architecture,
application functionality is distributed across more than one system

Definitions

• A client is the system where your application is running. It’s the system that
the user interacts with.

• A server is a system provides capabilities to one or more clients. It’s often
common logic or shared data that we need to have available to all clients.

Distribution Patterns

17

Client-server architecture

18

A client-server architecture splits processing between the application (client) and a remote
server which is typically shared by all clients e.g., a simple web server that provides services
to browsers running on many different systems, or a many clients using a shared database.

We have a
web services
lecture that

discusses this.

Multi-tier client-server architecture

19

A client-server architecture splits processing between the application (client) and one or more remote
systems, which coordinate work. e.g., a web server that provides services to browsers, which in turn
relies on an application server and database server.

Service-oriented architecture

20

Services in a service-oriented architecture are stateless components, which means that they can be
replicated and can migrate from one computer to another. A service-oriented architecture is usually easier
to scale as demand increases and is resilient to failure.

Application Patterns
How to structure your application.

21

Standalone architecture

22

Application Internet

Server

Server

A simple standalone application tends to be self-contained. It may form ad-hoc connections but has
few external dependencies, and most computation is handled within the application executable.

Your project
will probably
look like this.

DB

What is an application pattern?

Every one of the patterns that we just discussed includes a client: the main
application that the user interacts with.

Reminder: client applications need to
• Handle user interaction with a graphical interface.
• Communicate with servers and databases.
• Manage the application state between these entities.

How do we structure our application to do this?

23

Antipattern: “Big Ball of Mud”
A Big Ball of Mud is a haphazardly structured,
sprawling, sloppy, duct-tape-and-baling-wire, spaghetti-
code jungle.
These systems show unmistakable signs of unregulated
growth, and repeated, expedient repair.

-- Foote & Yoder 1997.

24

A Big Ball of Mud is the result of a system being tightly coupled, where any module
can reference any other module. A system like this is difficult to extend or modify.

Example: Pipe & filter architecture
A pipeline architecture transforms data as it passes through a series of
components:
• Pump is the data producer. This can be any input e.g., keyboard, data file.
• Pipes are unidirectional, accepting input passing to the next component.
• Filters perform operations on data before passing it along.
• Sink is the data target e.g., output file, database.

25

https://architectural-patterns.net/pipe-and-filter

Examples:
• Unix programs, compilers.

Suitability for us?
• Great for consoles, but not

interactive applications.

https://architectural-patterns.net/pipe-and-filter
https://architectural-patterns.net/pipe-and-filter
https://architectural-patterns.net/pipe-and-filter
https://architectural-patterns.net/pipe-and-filter
https://architectural-patterns.net/pipe-and-filter
https://architectural-patterns.net/pipe-and-filter
https://architectural-patterns.net/pipe-and-filter
https://architectural-patterns.net/pipe-and-filter

Example: Layered architecture

A layered architecture groups components into horizontal layers, where each layer
represents a logical division of functionality. Each layer can communicate with the
layer immediately below it; requests flow down from the top.

26

This is a common application pattern.
• Presentation handles the user

interface, including all input and
output.

• The Domain layer handles so-called
“Business Logic” i.e. components or
classes to handle the functionality
related to your problem domain.

• Persistence layer handles saving data
to a file, database or other service.

https://architectural-patterns.net/layers

request data

Presentation
(User Interface)

Domain
(Business Logic)

Persistence
(Repositories)

https://architectural-patterns.net/layers
https://architectural-patterns.net/layers
https://architectural-patterns.net/layers
https://architectural-patterns.net/layers

Layered architecture

27

We’ll use a modified layered architecture*
• Three layers or modules.
• Dependencies flow towards the center (domain layer).

• User interaction can supply input data, but so can external
sources like a DB or web service.

• The domain layer coordinates interaction; inner logic is
expressed in terms of the user’s problem domain.

• Outer layers can ONLY communicate through the domain layer.

Advantages
• Layers reinforce a clear separation of concerns.
• Dependencies reflect the actual flow of data/control.
• This approach should handle all our requirements.

* This is similar to Martin’s idea of a Clean Architecture.

https://www.amazon.ca/Clean-Architecture-Craftsmans-Software-Structure/dp/0134494164/ref=sr_1_1?dib=eyJ2IjoiMSJ9.OCrwPsfein6IVZbDtMgSUbfDKnDp4fRiYKdy46gcGouZ1ukaaAe6JxDatQGVg789ItQ4SRjkmLj-XIvEueCxpI0Lgvi7MTrVo4aB_CjYBYx4XxMhlbI3RzcEsPksYllRvswT4V0sIxfToW4apnjAj0SFNcR6kBnr0__XN9NMhUZq8C0icj4zVL-hzgDWtjbjGFhAfaTDP0Z_9q3kwGSy-NZ-HMsLN2y5OPq6D65_QEW0KGLiCDq51kZK4BbgKkJIGAH-DP17VTJGLeD6kFeweJJN3EcD5cBCGlnWWNNjSRQ.vjN848M-sAAp91kdvTxncvyj0ozONbMPD-ywzW5VBio&dib_tag=se&gad_source=1&hvadid=678290717953&hvdev=c&hvexpln=0&hvlocphy=9104904&hvnetw=g&hvocijid=2354697878356912407--&hvqmt=e&hvrand=2354697878356912407&hvtargid=kwd-340581057826&hydadcr=25140_13648527&keywords=clean+architecture+book&mcid=94ed00d6e1a73aaf95950107bfbea906&qid=1754494606&sr=8-1

What’s all this about dependencies?

A dependency reflects a relationship between two modules.
• If A requires B to compile, then A has a dependency on B i.e., A à B
• If A and B require each other i.e. A à B and B à A, then we have a

circular dependency. We want to avoid these since they make code
more complex and difficult to debug and test.
• e.g., how do you create A without having a reference to B and vice-versa?

How do you test them in isolation?

Our layered architecture avoids any circular dependencies since you
should only have:
 Presentation à Domain ß Data

28

Source code structure

This means that your application code should be split into
these modules. You should have packages containing the
classes and functions for each layer:

/presentation -- all user interface classes
/domain/ -- all data and custom classes that you produce
/data/ -- all external services e.g., your database

29

1. “presentation” package

In many ways, the user interface is the most complex part of the application.
You need to handle the interaction cycle:
• Accept input from the user e.g., mouse or keyboard.
• Process it through the domain layer e.g., fetch data from web, or save data to DB.
• Output results e.g., on a screen.

In a GUI application, the system should prioritize accepting user input, and
responding to it. This interaction cycle is critical.

30

31

MVC originated with Smalltalk (1988), as a UI pattern for interactive applications. It
is a particular implementation of the Observer pattern.
• Input is accepted and interpreted by the Controller,
• Data is routed to the Model, where it changes program state.
• Changes are published to the View(s) and are reflected to the user as output.

Model-View Controller MVC is a pattern
within the

presentation
layer.

32

Components
• View: output
• Controller: handles input.
• Model: manages state

MVC uses the Observer pattern to
notify Subscribers.

Flow
• The user provides input.
• The controller passes to the model

which acts on it.
• The model notifies subscribers aka

views and they update themselves.

MVC Classes

domain

presentation

https://en.wikipedia.org/wiki/Observer_pattern

Problems with MVC?

However, there are a few challenges with standard MVC.
• Graphical user interfaces bundle the input and output together

into graphical “widgets” on-screen (see user interfaces lecture).
• This makes input and output behaviours difficult to separate
• In-practice, the controller class is rarely implemented.

• Modern applications tend to have multiple screens.
• Need something like a coordinator class to control visibility of screens.
• Each screen may have its own data needs which cannot be handled by a

single model.
• It’s a Presentation layer architecture!

• We need to adapt it to work with our domain and data layers.

33

Model View View-Model (MVVM)

Model-View-ViewModel was invented by Ken Cooper and Ted Peters in 2005. It was
intended to simplify event-driven programming and user interfaces in C#/.NET.

MVVM adds a ViewModel that sits between the View and Model.

Why? Localized data.
• We often want to pull “raw” data from the Model and modify it before displaying

it in a View e.g., currency stored in USD but displayed in a different format.
• We sometimes want to make local changes to data, but not push them

automatically to the Model e.g., undo-redo where you don’t persist the changes
until the user clicks a Save button.

34

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Event-driven_programming

35

Components
• View: input and output.
• ViewModel: localized data for the view.
• Model: stores the main data.

Each View typically has one ViewModel associated
with it.

MVVM also uses the Observer pattern to notify
Subscribers, but unlike MVC, the subscriber is
typically a ViewModel.

The View and ViewModel are often tightly coupled
so that updating the ViewModel data will refresh
the View.

Model View View-Model (MVVM)

https://en.wikipedia.org/wiki/Observer_pattern

36

Dependency rule

Dependencies flowing “down” means that each
layer can only communicate directly with the
layer below it.
In this example, the UI layer can manipulate
domain objects, which in turn can update their
own state from the Model.

e.g., a Customer Screen might rely on a
Customer object, which would be populated
from the Model data (which in turn could be
fetched from a remote database).

Requests
flow down

37

Update rule

Notifications flowing up means that
data changes must originate from the
“lowest” layers.

e.g., a Customer record might be
updated in the database, which triggers
a change in the Model layer. The Model
in turn notifies any Subscribers (via the
Publisher interface), which results in
the UI updating itself.

In other words, updates flow back “up”
the hierarchy.

Data
flows up

38

Observer Pattern

MVVM leverages the Observer pattern.

That design pattern describes how a source-of-
data (model) sends updated data to a
subscriber (view-model) when the data
changes.

This pattern will emerge over-and-over in this
course, in the user-interface lecture and the
concurrency lecture.

We will revisit it several times in more detail.

2. “data” package

Your data package will consist of classes and functions for accessing external data. This
can be from any external source.

• e.g., database, web service, file, network socket.

We use the term repository for a “source of data” and abstract it behind an interface.
• IRepository: interface of common functions used across repositories.
• Repository: common term for any data source.

In practice, you should use specific names e.g., CustomerRepository, SalesRepository.

Classes in this package are allowed to access the domain package.
• Data will often be returned from a data source and “converted” into a domain

specific data class. e.g., Customer data as a List<Customer>.

39

40

3. “domain” package

Classes and functions specific to your application and the problem you are solving.
Data classes are usually stored here.

• e.g., Customer data class (used by the CustomerRepository when loading data, and by the
CustomerView layer to display it).

• e.g., Sales class which may reference a List<Customer>.

You might also create top-level functions that align with your use cases.
• e.g., if you have a use case to display Customer Sales data, your domain layer would pull in

data from both the CustomerRepository and SalesRepository, format it for the report and
send it to the presentation layer to display it.

This tends to be the most specialized layer since it contains classes specific to the
problem you are addressing. The external layers tend to be more generic.

• Not 100% true, since (for example) the Repository will contain your table structure, and the
presentation layer displays domain data. However, domain processing stays here.

41

Handling modularity
Packages? Multi-module structures? What to do?

42

Implementing modularity
Recall: modularity is the logical grouping of components to enforce
separation-of-concerns (loose coupling).

Kotlin supports modularity in two ways.
• Modules: A top-level collection of related components.
• Packages: A collection of logically related functionality.

Do you store your layers in separate modules, or just separate packages?

43

Option 1: Using packages for modules

Create directories for each layer, where all source code is saved.

Benefits

• Easiest to implement! Just create the packages.

• Resilient. You can move classes around easily.

Drawbacks

• Easy to accidentally allow the wrong dependencies e.g., you
can import `data` into `presentation`.

• Slow to build since Gradle will treat all of this as a single
module and rebuild it all.

• Everyone has access to the entire source tree, all of the time.

44

One module ‘main’ and packages for
data, domain and presentation layers.

Option 2: Multi-module structure

Create a separate module for each layer:
/data, /domain, /presentation.

Benefits
• Enforces dependencies since you define them in each module’s
build.gradle.kts file.

• Clean separation, so you can restrict access by module.
• Gradle can incrementally build modules, so faster builds.
• Easier to reuse code at the module level.

Drawbacks
• Harder to setup!
• Harder to maintain!
• Easy to break Gradle.

45

Adding modules

Modules:
• /data
• /domain
• /presentation

Use
• File -> New -> Module -> Kotlin
• Add module dependencies in
build.gradle.kts

46

Benefits
Layering our architecture really helps to address our earlier goals (reducing
coupling). It also provides these benefits:
• Independence from frameworks. The architecture does not depend on a

particular set of libraries for its functionality.
• Layers are more testable. Layers can be tested independently of one another.

e.g., the business rules can be tested without the UI, database, web server.
• Independence from the UI. The UI can be changed without changing the rest of

the system. A web UI could be replaced with a console UI, for example, without
changing the business rules.

• Independence from the data sources. You can swap out Oracle or SQL Server for
MongoDB, or something else. Your domain logic is not bound to the database or
to a specific data source.

47

References

• Fowler. 2002. Patterns of Enterprise Application Architecture.
Addison-Wesley. ISBN 978-0321127426.
• Fowler. 2019. Software Architecture Guide.
• Martin. 2017. Clean Architecture: A Craftsman’s Guide to Software

Structure and Design. Pearson. ISBN 978-0134494166.
• Richards & Ford. 2020. Fundamentals of Software Architecture: An

Engineering Approach. O’Reilly. ISBN 978-1492043454.
• Sommerville. 2021. Engineering Software Products: An Introduction

to Modern Software Engineering. Pearson. ISBN 978-1292376356.

48

https://www.amazon.ca/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
https://martinfowler.com/architecture/
https://www.amazon.ca/Clean-Architecture-Craftsmans-Software-Structure/dp/0134494164
https://www.amazon.ca/Clean-Architecture-Craftsmans-Software-Structure/dp/0134494164
https://www.oreilly.com/library/view/fundamentals-of-software/9781492043447/
https://www.oreilly.com/library/view/fundamentals-of-software/9781492043447/
https://www.amazon.ca/Engineering-Software-Products-Ian-Sommerville/dp/013521064X
https://www.amazon.ca/Engineering-Software-Products-Ian-Sommerville/dp/013521064X

