Testing

CS 346 Application
Development

Why do we test?

The goal of testing is to ensure that the software that we produce meets our
objectives, specifically when deployed into the environment where it will be used.

Purpose of testing?
* Find problems aka bugs and address them before shipping.
* Find design flaws and incrementally improve the product.

Benefits of testing?

* Improve confidence that you have met your goals.

* Occasionally find defects, deficiencies or design flaws from our tests.
* Produce an improved design, sometimes as a by-product of testing.

Agile Testing

Business Facing

-

o

Functional examples
Examples — third party
integrations
Contract testing on APIs

\

Guide Development

Test doubles for external

Unit testing
Static analysis
Component integration

integrations
Data integrity

)
\

)

/

Exploratory testing
Usability
Monitoring
Observability
Testing in Production

~

-

-

Recoverability
Performance
Load/Stress
Reliability/Safety
Infrastructure

J
\

J

3npoud ayi anbiyid

Technology Facing

The testing quadrants demonstrate different concerns. We
need different types of tests for each quadrant!

Where will we focus our attention?

We will focus on the left-hand side of this matrix:
tests that benefit development. Types will include:

* Unit tests
* operating at the class level; low-level interfaces. Produce as part of a feature.

* Test doubles include “fake” classes - more later MANY of these! Cheap to produce.

* Functional tests (aka Integration tests)
* classes or collections of classes that provide features.
* check user-level functionality; end-to-end feature testing.

* third-party integration includes databases, cloud. | Produce as part of a release.

FEW of these! Expensive to produce.

* System tests
* Test how features interact with one another. i

Test-Driven Development (TDD)

Promoted by Kent Beck around 2002 as an Extreme
Programming (XP) practice.

* The basic idea is that you write tests before writing
the corresponding implementation code.

* The test defines a contract that your code satisfies.

TDD development cycle

1.

Define an interface or specification for your class
or module.

Write a test against that interface.

Write the implementation code that causes the
test to pass.

Repeat until completed.

Add a Test

Execute the Tests

Make Changes to
the Code

Execute the Tests

Pass. Development Stops

Refactoring

Advantages of TDD?

Early bug detection. You are building up a set of tests as you write code.
* Your tests should be comprehensive so that you catch bugs immediately.
* By the time your implementation is complete, you have a full set of tests.

Better designs. Writing tests forces you to write clean code. e.g., improved
interfaces, clean separation of concerns, cohesive classes.

* Code must be well-implemented to be testable.

Confidence to refactor. Refactoring is improving your code incrementally.
* To refactor, you need to verify that you haven’t “broken anything” in the process.

e TDD helps you have the confidence to refactor!

Simplicity. Code that is built-up deliberately tends to be simpler & maintainable.

Unit testing configuration

Setup the Kotlin test framework for unit testing.

Installing test dependencies

Kotlin has a cross-platform test framework.
 Similar to Junit (Java standard) but works across all platforms
* Make sure that you have these lines in your build.gradle.kts file.

dependencies {
testImplementation(kotlin("test"))

}
tasks.test {

useJUnitPlatform() // use Junit as the test runner when possible

Unit tests are just functions

Unit tests are just Kotlin classes and functions that check
inputs and outputs for what they are testing.

e Unit tests should be placed under src/test/kotlin.

* It’s best practice to have one test class for each class that
you want to test. e.g., classes Main and MainTest.

* Unit tests are automatically executed with gradle
build or can be executed manually with gradle test.

$ gradle build
BUILD SUCCESSFUL in 928ms
8 actionable tasks: 8 up-to-date // this includes tests

$ gradle test
BUILD SUCCESSFUL in 775ms
3 actionable tasks: 3 up—-to-date

> gradle
b src
VvV g main
hd kotlin
¢ Main
v g test
v kotlin
¢ MainTest
/¥ build.gradle
& gradle.properties
/& gradlew
/® gradlew.bat
M settings.gradle

A Simple Unit Test

1. Create a class to test under src/main/kotlin.

class Sample() {
fun sum(a: Int, b: Int): Int {
return a + b
1

2. Create a test class under src/test/kotlin. Add functions as tests.

import kotlin.test.Test
import kotlin.test.assertEquals

internal class SampleTest {
@Test
fun testSum() {
private val testSample: Sample = Sample()
assertEquals(42, testSample.sum(40, 2))

Internal means not-visible
outside the file. Prevents

production code from using test
functions.

10

Running tests

[NON] Create Test
Testing library: <) JUnits v
Class name: HelloApplicationKtTest
Superclass: v
Destination package: com.example.source v
Generate: setUp/@Before
tearDown/@After
Generate test methods for: Show inherited methods
Member
m generateGreeting(name:String):String
m main():void

Press Cmd-N to generate a new test for
a selected class.

package com.example.source

import org.junit.jupiter.api.Test
import org.junit.jupiter.api.Assertions.*

S internal class HelloApplicationKtTest {

@Test
S fun generateGreeting() {
val expected = "Hello world!"

assertEquals(expected, generateGreeting(name: "world"))

1

In the test class, you can execute a particular test by
clicking the Run icon in the gutter.

11

Assertions

We call utility functions to assert how the function should successfully
perform.

Function Purpose

assertEquals Provided value matches the actual value

assertNotEquals | The provided and actual values do not match

assertFalse The given block returns false

assertTrue The given block returns true

Test Annotations

The @Test annotation tells the compiler that this is a unit test function.
The kotlin.test package provides annotations to mark test functions,
and denote how they are managed:

Annotation Purpose

@AfterTest Marks a function to be invoked after each test
@BeforeTest Marks a function to be invoked before each test
@Ignore Mark a function to be ignored

@Test Marks a function as a test

Writing Unit Tests

What are the characteristics of well-written tests?

14

Unit Test Characteristics

A unit test is a test that meets the following three requirements:
1. Verifies a single unit of behaviour,
2. Does it quickly, and
3. Doesitin isolation from other tests.

Unit tests are the lowest-level tests that you can write:

* Tests should be small and quick to execute and return results.

* Each test focuses on a specific class or component, tested in isolation.

* Tests cannot have dependencies on other tests! i.e., can execute in any order.

* As an author, favour many small tests that each check a single thing over
monolithic tests.

If a test exercises more than a single class, it’s not a unit test.

Unit Test Composition

Every unit test should be a separate function, with the following steps:

1. Arrange:
* Setup the conditions for your test.
* Initialize variables, load data, setup any dependencies that you might need.

* Do NOT reuse anything from a different test.

2. Act:
* Execute the functionality that you want to test and capture the results.

3. Assert:
* Check that the actual and expected results match.

» Use asserts appropriately - see next page.

class CalcTest {

@Test
fun validPlus() {
val input = arrayOf("1", "+" , "2")

val results = Calc().calculate(input)}
assertEquals(3, results)

}.

@Test

fun invalidPlus() {
val input = arrayOf("1", "+", "2")
val results = Calc().calculate(input)
assertNotEquals(5, results)

}.

@Test
fun insufficientArguments() {
try {
val input = arrayOf("1", "+")
Calc().calculate(input)
} catch (e:Exception) {
assertTrue(true)
}

}.

Test valid input conditions.
Create a unit test like this for each
operation or function.

Test invalid input conditions.

Create a unit test like this for each
operation or function to ensure that you
handle input errors correctly. Choose
representative values (or important
outliers)

Special-purpose unit test to
check a specific error condition.

17

Integration Tests

The next step; handling more complex interactions.

Integration tests

"Unit tests are great at verifying business logic, but it’s not enough to

check that logic in a vacuum. You have to validate how different parts

of it integrate with each other and external systems: the database, the
message bus, and so on." — Khorikov (2020).

* A unit test is a test that verifies a single unit of failure, in isolation.

* An integration test is a test with a broader scope.
* It checks multiple potential units of failure.
* Seeks to understand the interaction between components.
» Tests component dependencies.

What is a dependency?

 When you are examining a software component, we say that your
component may be dependent on one or more other software entities to
be able to run successfully. e.g. a library, or a different class, or a database.
Each of these represents code that affects how the code being tested will
execute.

* We often call the external software component or class a dependency.
That word describes the relationship (classes dependent on one another),
and the type of component (a dependency with respect to the original
class).

* A key strategy when testing is to figure out how to control these
dependencies, so that you're exercising your class independently of the
influence of other components.

Dependencies

Managed vs. unmanaged dependencies. Distinction between
dependencies that we control (managed), and those that may be
shared (unmanaged).

* A managed dependency suggests that we directly control the state.

* e.g., A database could be single-file and used only for your application

(managed) or shared among different applications (unmanaged).

Internal vs. external dependencies. Distinction between running in the
context of our process (internal) or out-of-process (external).

» External intrinsically means unmanaged (and usually untrusted).

* e.g., Alibrary is internal. If statically linked, we manage its state.

* e.g., An external library is external and probably unmanaged.

An unmanaged dependency cannot be tested directly.
* How can we trust that its state isn’t changing independently?

Test Doubles (aka Mocks)

How do you test unmanaged dependencies?
1. You test to the interface and not the concretion.

2. You can also create a “mock” or a test double that substitutes for the
concretion in testing.

A mock is a fake object that holds the expected behaviour of a real object but without

any genuine implementation. For example, we can have a mock File System that would
report a file as saved but would not actually modify the underlying file system.

Mocks, or test doubles, remove dependencies and allow for controlled
testing. They are extremely useful!

22

Mocking & Dependency Injection

Dependency injection is the]practic_e of supplying dependencies to an object
in its argument list instead ot allowing the object to create them itself.

Problem: Here’s a class that manages the underlying database connection.
How do you test it separately from the database?

class Persistence {
val repo = UserRepository() // Create the required repo instance

fun saveUserProfile(val user: User) {
repo.save(user)
}
}

val persist = Persistence()

persist.saveUserProfile(user) // saves using the real hard-coded database
23

https://en.wikipedia.org/wiki/Dependency_injection

Example: Mock DB

Solution: change the Persistence class so that we pass in the dependency.
This allows us to control how the repository is created and even replace it
with a mock for testing.

class Persistence(val repo: IUserRepository) { // pass in the repo
fun saveUserProfile(val user: User) {
repo.save(user)

hy
}

class MockRepo : IUserRepository {
// body with functions that mirror how the repo would work
// but simpler/fake implementation

}.

val mock = MockRepo()
val persist = Persistance(mock)
persist.saveUserProfile(user) // save using the mock database

24

References

e JetBrains. 2025. kotlin-test documentation.

* Khorikov. 2020. Unit Testing Principles, Practices, and Patterns. Manning.
ISBN ISBN 978-1617296277.

25

https://kotlinlang.org/api/core/kotlin-test/
https://kotlinlang.org/api/core/kotlin-test/
https://kotlinlang.org/api/core/kotlin-test/
https://www.manning.com/books/unit-testing

