Refactoring

CS 346 Application
Development

Refactoring

“Refactoring is a disciplined technique for restructuring an existing
body of code, altering its internal structure without changing its
external behaviour. Its heart is a series of small behaviour preserving
transformations. Each transformation (called a "refactoring") does little,
but a sequence of these transformations can produce a significant

restructuring.”
— Martin Fowler, Refactoring. 2000, 2018.

“Clean Code”

* Martin (2008) would say that refactoring produces a “clean” codebase
that can be adapted over time as requirements change.

* Goals for our code:

* Clear and easy to read: variable names that make sense, no “magic
number”, classes that aren’t bloated, well-constructed methods with no
side effects.

* Simple: no unnecessary complexity that makes difficult to understand.
* Robust: resilient to change, and less likely to break when changed.

* Intentionally designed: carefully segmented and structured.

* Well-tested: tests demonstrate that the code is working correctly.

Examples of Refactoring

 Cleaning up class interfaces and relationships.

* Fixing issues with class cohesion/coupling. structural
* Reducing or removing unnecessary dependencies.

 Removing code duplication.

» Simplifying code to reduce unnecessary complexity.
* Making code more understandable and readable.

simplicity

correctness

* Adding more exhaustive tests.

CODE-DRIVEN TESTING REFACTORING

00006.
&
The test fails. The test succeeds. B f

Check
whether
all the tests
The test succeed.
succeeds.

Some tests
fail.

The test fails. . ” The code quality

satisfies.

_focus__ _focus_
Completion of the contract Alignment of the design

as defined by the test with known needs

@ (1) (9 Xavier Pigeon
BY _SA

TDD makes refactoring possible. Unit testing should give you confidence
that you will not break existing functionality when you refactor.

Refactoring Patterns

Code smells? Time to refactor!

* Martin Fowler, a refactoring pioneer,
suggests that the starting point for it
refactoring should be to identify e
code ‘smells’.

e Code smells are indicators in the
code that there might be a deeper
problem. N

* For example, very large classes may code tests
indicate that the class is trying to do
too much. This probably means that its
structural complexity is high.

Identify refactoring
strategy

Make small
improvement until
strategy completed

Example: structure

Large classes

* This suggests that the single responsibility principle is being violated. Break down large
classes into easier-to-understand, smaller classes.

Long methods/functions

* Long methods or functions may indicate that the function is doing more than one thing. Split
into smaller, more specific functions or methods.

Duplicated code
* Rewrite to create a single instance of the duplicated code that is used as required

Meaningless names

* Theses make the code harder to understand. Replace with meaningful names and check for
other shortcuts that the programmer may have taken.

Unused code
* This increases the reading complexity of the code. Delete it! It’s in your Git history right?

How to refactor

1. Identify the problem to solve. Apply a pattern to address it.
2. Do not add any new functionality during refactoring.

3. Ensure that all existing tests continue to pass. There are two
case where tests can break down:
1. You made an error during refactoring. This one is a no-brainer: go
ahead and fix the error.

2. Your tests were too low-level. For example, you were testing private
methods of classes. In this case, the tests are to blame. You can either
refactor the tests themselves or write an entirely new set of higher-
level tests.

Refactoring Patterns

Martin Fowler. 2018. Refactoring: Improving the Design of Existing Code. 2nd
Edition. Addison-Wesley. ISBN 978-0134757599. https://refactoring.com/catalog/

6. COMPOSING METHODS
(=8 8
o 2.
o 3.
o 4.
(o5 78
0 6.
(o 7 &
o 8.
0 9.

Extract Method

Inline Method

Inline Temp

Replace Temp with Query

Introduce Explaining Variable

Split Temporary Variable

Remove Assignments to Parameters
Replace Method with Method Object
Substitute Algorithm

7. Moving features between elements

10.
11.
12.
13.
14.
15.
16.
17.

Move method

Move field

Extract Class

Inline Class

Hide Delegate

Remove Middle Man
Introduce Foreign Method
Introduce Local Extension

IntelliJ IDEA has built-
in support for these

operations!

8. ORGANIZING DATA

o 18.
0 19.
0 20.
0 21.
0 22.
0 23.
0 24,
0 25.
0 26.
Q27
0 28.
0 29.
0 30.
o 31.
0 32.
0 32.

Self Encapsulate Field

Replace Data Value with Object

Change Value to Reference

Change Reference to Value

Replace Array with Object

Duplicate Observed Data

Change Unidirectional Association to Bidirectional
Change Bidirectional Association to Unidirectional
Replace Magic Number with Symbolic Constant
Encapsulate Field

Encapsulate Collection

Remove Record with data class

Replace Type Code with Class

Replace Type Code with Subclasses

Replace Type Code with State/Strategy

Replace Subclass with Fields

10. MAKING METHOD CALLS SIMPLER

0 41.
0 42.
0 43.
0 44,
O 45,
0 46.
0 47.
O 48.
0 49,
o 50.
o 51.
o 52.
o 53.
0 54,
0 85.

Rename method

Add Parameter

Remove Parameter

Separate Query from Modifier
Parameterize Method

Replace Parameter with Explicit Methods
Preserve Whole Object

Replace Parameter with Method
Introduce Parameter Object

Remove Setting Method

Hide Method

Replace Constructor with Factory Method
Encapsulate Downcast

Replace Error Code with Exception
Replace Exception with Test

https://github.com/HugoMatilla/Refactoring-Summary

11

https://refactoring.com/catalog/
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/refactoring-source-code.html

Example: Extract Method

* We might extract a method from existing code.

* Do this to make the original higher-level function is easier to read, or to
improve the ability of a function to be called from elsewhere in the code.

// original // refactored
fun printOwing(name: String, amount: Double) { fun printOwing(name: String, amount: Double) {
printBanner() printBanner();
//print details printDetails(name, amount);
println("name: $name") }
println("amount: $amount")
}

fun printDetails (name: String, amount: Double) {
println("name: $name")
println("amount: $amount")

https://github.com/HugoMatilla/Refactoring-Summary - 1-extract-method 5

https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary

Example: Inline Method

* We might also the opposite: remove a pointless method.

* Do this when indirection is needless (simple delegation). Also do this when
group of methods are badly factored and grouping them makes them
clearer.

// original // refactored
fun getRating(): Int { fun getRating(): Int {

return moreThanFivelLateDeliveries() ? 2 : 1 return (_numberOfLateDeliveries > 5) ? 2 : 1;
} }

fun moreThanFivelLateDeliveries(): Boolean {
return _numberOfLateDeliveries > 5
}

https://github.com/HugoMatilla/Refactoring-Summary#2-inline- 13
method

https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary

Example: Extract Class

* You have one class doing work that should be done by two. Create a new class
and move the relevant fields and methods from the old class into the new class.

* Do this when subsets of methods seem to belong together, or you have data that
could be managed as an independent class.

// original // refactored
class Person { class Person {
name: String, name: String,
officeAreaCode: Int, telephone_number: TelephoneNumber
officeNumber: Int, }
getTelephoneNumber()
}

class TelephoneNumber {
areaCode, number, getTelephoneNumber()
}

https://github.com/HugoMatilla/Refactoring-Summary#12-extract-class

14

https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary

Example: Introduce Foreign Method

A server class you are using needs an additional method, but you
can't modify the source code for the original class.

// original
val newStart = Date(previousEnd.getYear(),previousEnd.getMonth(),previousEnd.getDate()+1)

// refactored: cannot change date class, so add “foreign method”
fun nextDay(date: Date): Date {
return Date(date.getYear(),date.getMonth(),date.getDate()+1);
}
val newStart = nextDay(previousEnd)
// refactored: extend Date class, using Kotlin features
fun Date.nextDay(): Date {
return Date(it.getYear(), it.getMonth(),it.getDate()+1);
}

val newStart = previousEnd.nextDay()

https://qgithub.com/HugoMatilla/Refactoring-Summary#16-introduce-foreign-method

15

https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary

Intelli) supports refactoring! (Ctrl-T)

* Rename (Shift+F6): Rename a variable, method, class, or other element and
updates all references to it throughout the codebase.

» Extract Method (Ctrl+Alt+M): Convert a block of code into a new method.

* Inline (Ctrl+Alt+N): Replace method calls with the method's code.

» Change Signature (Ctrl+F6): Modify the signature of a method, including
parameters, return type, and visibility.

« Move (F6): Move classes, methods, or variables to a different package or class.

« Extract Variable (Ctrl+Alt+V): Extract a selected expression into a new variable.

« Extract Field (Ctrl+Alt+F): Extract a selected expression into a new field.

* Introduce Parameter (Ctrl+Alt+P): Introduce a new parameter to a
method/constructor.

« Safe Delete (Alt+Delete): Delete a file/element without breaking references.

References

 Fowler. 2018. Refactoring: Improving the Design of Existing Code.
Addison-Wesley.

e Fowler. 2025. Refactoring.com Online Catalog. Online.

e Shvets. 2021. Refactoring Guru: Design Patterns. Online.

17

https://www.amazon.ca/Refactoring-Improving-Design-Existing-Code/dp/0134757599/
https://refactoring.com/catalog/
https://refactoring.com/catalog/
https://refactoring.guru/design-patterns

