Databases

CS 346 Application
Development

The need for data management

* Most applications that you build will have data that they need to
persist. e.g.,
* a music player might store playlists of music,
 a social media application might store account and login information,
* a photo editor might store your preferred file location, and image settings,
* any application might store preferred theme, window size and location.

* You will typically store this type of data in some persistent location:
* e.g., file on the local filesystem, or a local or remote database.

What is a database?

A database is a system for storing data as records.
* It’s designed to handle large volumes of data.
* It supports efficient and complex operations.

* Facilitates data sharing across concurrent
users/systems (which makes it immediately
superior to raw data files).

A record is a set of associated fields.

« ACustomer class describes a Customer as a set of
properties and behaviours.

e ACustomer record describes it as a set of fields.

e.g.,
Customer(cust_id=1001, name=“Jeff Avery”, city=“Waterloo”)

Customer

- cust_id: Integer
+ name: String
+ city: String

val c1 = Customer(“Jeff Avery”, “Waterloo”)
val c2 = Customer(“Marie Curie”, “Paris”)
val ¢3 = Customer(“Billy Bishop”, “Ottawa”)

File Database

Cloud Storage

Applications often consume data from

many different sources and need to store it
in a consistent manner.

Data guarantees: ACID

ACID represents a set of properties intended to guarantee data validity despite errors,
power failures, and other mishaps.

Ideally, we want these properties in our database:
* Atomicity prevents updates to the database from occurring only partially.

» Consistency guarantees that transaction can move database from one valid state to
the next. All associated changes take place together.

* Isolation determines how a particular action is shown to other concurrent system
users. e.g., how you handle cases of reading data that is being changed.

 Durability is the property that guarantees that transactions that have been
committed will survive permanently.

Relational Databases

There are many different types of databases. The two main approaches that you
will encounter are:

* Relational (SQL) databases for structured data e.g., Oracle, PostgreSQL, MySQL

* Document (NoSQL) databases for unstructured data e.g., MongoDB

We'll focus on relational databases:
1. ACID compliance. NoSQL databases often trade safety for performance.
2. They allow for very efficient data storage with little redundancy.

3. They are optimized for operations on sets of records.
* This mirrors how we want to work with our data.
* e.g., “fetch all sales that were recorded last night in the Chicago office”.

https://www.oracle.com/ca-en/database/technologies/
https://www.postgresql.org/
https://www.mysql.com/
https://www.mongodb.com/

Relational Databases

Old-school, SQL databases. Still incredibly useful.

Table

A relational database structures data into tables representing logical entities e.g.
Customer and Transaction tables. Records are stored as rows in each table.

A table is a foundational concept. It collects related fields into records.

e.g. Customer table contains customer information
* One record (row) per customer
* One field (column) for each property of that customer.

cust_id name city 4= Fields (Columns)
1001 Jeff Avery Waterloo 1
1002 Marie Curie Paris = Records (Rows)

1003 Billy Bishop Ottawa

Data -> Tables

Class

Customer

- cust_id: Integer
+ name: String

+ city: String

Transactions

- cust_id: Integer
- tx_id: Integer

+ item: String

+ amount: Double

CSV File

cust_id, name, city
1001, Jeff Avery, Waterloo
1002, Marie Curie, Paris
1003, Billy Bishop, Ottawa

cust_id, tx_id, item, amount
1002, 43222, Chemistry set, 100.00
1003, 54187, Duct tape, 5.99

Database Table

cust_id name city

1001 Jeff Avery Waterloo

1002 Marie Curie Paris

1003 Billy Bishop Ottawa

tx_id cust_id Item Amount
43222 1002 Chemistry set 125.00
54187 1003 Duct tape 5.99

Data integrity is retained across data representations, even if the structure changes slightly

Primary Key

You need a way to uniquely identify each record in a table.
* A key is a column that helps us identify a row or set of rows in a table.

* A primary key is a column in a database with a value that uniquely identifies
each row. A table cannot normally have more than one primary key.
* In the table below, cust_id is a unique identifier for each row in the customer table.
* Specifying cust_id=1002 will restrict an operation to the Marie Curie record.

cust_id name city
1001 Jeff Avery Waterloo
1002 Marie Curie Paris

1003 Billy Bishop Ottawa

Records spanning tables

Relational databases reduce data Customer
redundancy by splitting records e I o
across multiple tables.
1001 Jeff Avery Waterloo
e.g.
)) 1002 Marie Curie Paris
Imagine that we have an online .
store. We want to track both 1003 Billy Bishop Ottawa
Customer and Transaction (Sales)
information, so we split this data LR
across two tables.
. . tx_id cust_id Item Amount
If Mme. Curie purchases something | . |
else later, we only need to add one 43222 1002 Chemistry set 125.00
Transaction row; the Customer row 54187 1003 Duct tape 5.99

doesn’t change.

10

Using foreign Keys

How do we associate our two tables?

A foreign key is a key used to refer to
data being held in a different table.

A primary key of one table is the
foreign key in a different table.
Customer table

* Primary key: cust_id
Transactions table

* Primary key: tx_id

* Foreign key: cust_id

Customer
cust_id name city
1001 Jeff Avery Waterloo
1002 Marie Curie Paris
1003 Billy Bishop Ottawa
Transactions\
tx_id cust_id Item Amount
43222 | 1002 | Chemistry set | 125.00
54187 1003 Duct tape 5.99

Each transaction can be uniquely identified by the
primary key tx_id. It is linked to a unique customer
through cust_id. .

Reconstructing a record

We want to store our data using multiple tables to avoid redundancy,
but we will eventually want to recreate the complete record.

City 231, Wallaceburg
Customer - city_id: Integer 232, Washago
+ name: String 233, Waterloo
101, Jeff Avery, 233, 5 - cust_id: Integer
102, Brien Bendis, 231, 3 + name: String
103 Julie Zhang, 155,2 | + city_id: Integer Province 3, Saskatchewan
+ prov_id: Integer———————/ - prov_id: Integer 4, Manitoba
+ name: String 5, Ontario
101, Jeff Avery, 233, 5
233, Waterloo |:> 101, Jeff Avery, Waterloo, ON
5, Ontario,

12

Joins

A join describes the relationship between records in different tables. We split
data for efficiency but joins lets us reassemble records when we need that

information again. We’ll revisit joins in a moment...

Customer Transactions Products
customer_id: Integer <€——————— | customer_id: Integer product_id: Integer
first_name: String product_id: Integer / name: String
last_name: String date: DateTime cost: Double

address: String

city: String

customer_id: 1001 customer_id: 1001 product_id: 55
first_name: Jeff product_id: 55 name: T-shirt
last_name: Avery date: 12-Aug-2020 cost: $29.95
address: 200 Main St.

city: Waterloo

Record: 1001, Jeff Avery, 200 Main St. Waterloo, T-shirt, $29.95, 12-Aug 2020 13

Transactions ensure ACID

To achieve safety, we treat multiple actions that are being performed as
a single unit of work called a transaction.

* All changes are performed together (atomic).
* If there is any error in performing an action, we undo all of these actions.

* How do you use this?

Details will
e “start” a transaction when you perform a series of operations and vary by
* “commit” when you are done. database

* This is how we can handle:
* Two or more users are updating the same data at the same time, or
* One person reading data while one modifies it, or
* An update failure that doesn’t leave data in an inconsistent state.

Designing a database

How do you decide on the structure? How do you create and manage it?

15

Steps to create a database

1. Decide on the tables (entities) to model.
* These should come from your requirements.
* What data do you need to store for your features?
e Optional: Entity-Relationship Diagram (ERD)

2. Normalize the schema to remove inefficiencies.
* INF 2NF, 3NF

3. Design the tables.
* Columns, data types, relationships, keys.

CUSTOMER

string | name

string | custNumber

string | sector

T

places

ORDER

int orderNumber

string | deliveryAddress

contains

LINE-ITEM

string | productCode

int quantity

float pricePerUnit

An Entity Relationship Diagram (ERD)
created in Mermaid.

16

https://mermaid.js.org/syntax/entityRelationshipDiagram.html
https://mermaid.js.org/syntax/entityRelationshipDiagram.html
https://mermaid.js.org/syntax/entityRelationshipDiagram.html

What is an ERD?

string | custNumber

string | sector

A diagram that shows entities and their
relationships. T

* Tables: entities that we wish to model. |
* e.g., Customer, Order and Line-Item.

ORDER

One (and only one)
 Columns: fields in each entity. 5t oo | erdertumber
string | deliveryAddress
* e.g., name, custNumber, sector. & oneormany =
* Relationships: how entities are related. —————0< oo
* e.g., customer-places-order Cardinality symbols

LINE-ITEM

e e.g., order-contains-line-item.

 Cardinality: numerical relationship between
rows of one table and rows in another.
* e.g., 1 customer places 0 or more orders.
* e.g., 1 order contains at least one line item. See mermaid.js to

generate diagrams.

string | productCode

int quantity

float pricePerUnit

17

https://mermaid.js.org/syntax/entityRelationshipDiagram.html

Design Tables

* Start by thinking about your requirements.
* Which entities do you need to represent your data?
 Entities = Tables

* If you're unsure of where to start, make a list of all the data items
that you need to satisfy your functional requirements.
* e.g., mm-android application had entities for TASK and TAGS.

1 task contains 0 or more tags (strings associated with a task).

* If you've already got your application working and are adding the
database now? Look at your data classes for ideas.

* Each data class is probably an entity.

TASK

int id

string | title

string | description

string | dueDate

string | tags

int position

T

contains

A

TAGS

int id

string | tag

18

Normalization

Constraint UNF | INF | 2NF | 3NF
(informal description in parentheses) (1970) | (1970) | (1971) | (1971)
Unique rows (no duplicate records)“! v v v v

Scalar columns (columns cannot contain relations or
. [5] X v v v
composite values)

Every non-prime attribute has a full functional dependency on
each candidate key (attributes depend on the whole of every X X v v
key)!®!

Every non-trivial functional dependency either begins with a
superkey or ends with a prime attribute (attributes depend X X X v
only on candidate keys)!°!

ANF: each field is atomic, containing a single value rather than a set of values - sufficient for us

2NF: 1NF and no partial dependencies i.e., partial composite keys.

3NF: 2NF and each dependency must depend solely and non-transitively on
the candidate key.

-- Wikipedia

19

https://en.wikipedia.org/wiki/Database_normalization

Establish Column Data Types

* Numeric:
* INTEGER: whole numbers
* DECIMAL: fixed precision and scale e.g., monetary values
* FLOAT: floating point

e Character
* CHAR: fixed length strings
* VARCHAR: variable length strings up to a max length
* TEXT: large blocks of text e.g., text editor

* Date
e DATE: date in YMD
e TIME: time in HMS

Determine Relationships (and Keys)

* How are your tables related to one another?

* Each table needs a primary key
e Should be auto-generated by the database
e Use constraints e.g., NOT NULL to enforce data integrity

* Allow the libraries to enforce relationships
» Specify PK and FK relationships in your schema
e Don’t rely on yourself to form queries properly (it’s easy to make mistakes!)

Structured Query Language (SQL)

How to write queries for your relational database.

How do we perform database operations?

I"

SQL (pronounced “Ess-que-ell”) is a Domain-Specific Language (DSL) for
describing your queries. Using SQL, you write statements describing the
operation to perform and the database performs them for you.

 SQL is an ANSI/ISO standard?, so SQL commands work the same way
across different relational databases. You can use it to:

Create new records

Retrieve sets of existing records

Update the fields in one or more records
Delete one or more records

SQL Syntax

SQL has a particular syntax for managing sets of records:

<operation> (FROM) [table] [WHERE [condition]]
operations: SELECT, UPDATE, INSERT, DELETE, ...
conditions: [col] <operator> <value>

You issue English-like sentences describing what you intend to do.

* SQL is declarative: you describe what you want done, but don’t need
to tell the database how to do it.

* There’s also a relatively small number of operations to support.

Create: Add new records

INSERT adds new records to your database.

INSERT INTO Customer(cust_id, name, city)
VALUES (1005, “Molly Malone", "Kitchener")

INSERT INTO Customer(cust_id, name, city)
VALUES (1005, “April Ludgate'", "Kitchener") // problem?

25

Retrieve: Display existing records

SELECT returns data from a table, or a set of tables. NOTE: Asterix (*) is a
wildcard meaning “all”.

SELECT % FROM Customers
——> returns ALL data

SELECT * FROM Customers WHERE city = "Ottawa"
—— > {"cust_id"1003, "name":"Billy Bishop", "city":"Ottawa")

SELECT name FROM Customers WHERE custid = 1001
——> "Jeff Avery"

26

Update: Modify Existing Records

UPDATE modifies one or more fields based in every row that matches the
criteria that you provide.

If you want to operate on a single row, you need to use a WHERE clause to
give it some criteria that makes that row unique.

UPDATE Customer SET city = "Kitchener" WHERE cust_id = 1001
—> updates one record since cust_id is unique for each row

UPDATE Customer SET city = "Kitchener" // uh oh

—> no “where” clause, so we change all records to Kitchener.

27

Delete: Remove records

DELETE removes every record from a table that matches the criteria
that you provide.

If you want to operate on a sinile row, you need to use a WHERE clause
to give it some criteria that makes that row unique.

DELETE FROM Customer WHERE cust_id = 1001
—> deletes one matching record since cust_id is unique

DELETE FROM Customer// uh oh
—> deletes everything from this table

28

Filtering with a “where” clause

A where clause allows us to filter a set of records.

e.g.,
UPDATE Customer SET city = "Kitchener" WHERE cust_id = 1001

Sorting with an “order by” clause

An “order by” sorts the results by the column name that you specify.

e.g.,
SELECT * FROM Products ORDER BY Price;

30

Joining records

Customer Transactions Products
customer_id: Integer <4————» | customer_id: Integer product_id: Integer
first_name: String product_id: Integer / name: String
last_name: String date: DateTime cost: Double

address: String
city: String

SELECT c.customer_id, c.first_name + “ “ + c.last_name, t.date, p.name, p.cost
FROM (Customer c
INNER JOIN Transactions t ON c.customer_id = t.customer_id)
INNER JOIN Products p ON t.product_id = p.product_id)

1001, Jeff Avery, 12-Aug-2020, T-shirt, 29.95

31

Types of SQL joins

OrderID CustomerID OrderDate

These two tables are related

10308 1996-09-18 through the CustomerID
10309 37 1996-09-19 column.
10310 77 1996-09-20

CustomeriD CiustomerName

Alfreds Futterkiste Maria Anders Germany
2 Ana Trujilo Emparedados y helados Ana Trujilo Mexico
3 Antonio Moreno Taqueria Antonio Moreno Mexico

We have multiple ways that we can associate these tables based on this relationship.

Example from https://www.w3schools.com/sql/sql join.asp

32

https://www.w3schools.com/sql/sql_join.asp

Types of SQL joins

(INNER) JOIN: Returns records that have matching values in both tables

LEFT (OUTER) JOIN: Returns all records from the left table, and the matched
records from the right table

RIGHT (OUTER) JOIN: Returns all records from the right table, and the matched
records from the left table

FULL (OUTER) JOIN: Returns all records when there is a match in either left or
right table

INNER JOIN LEFT JOIN RIGHT JOIN FULL OUTER JOIN

33

Example: INNER Join

SELECT ProductID, ProductName, CategoryName
FROM Products

INNER JOIN Categories
ON Products.CategoryID = Categories.CategoryID;

Only returns values where the CategorylID exists in both
Products and Categories.

e.g., if a Product existed in the Product table but there was no
corresponding category in the Categories table, then it would
now show up in the query results.

INNER JOIN

34

Example: LEFT (OUTER) Join

SELECT column_name(s)

FROM tablel

LEFT JOIN table2

ON tablel.column_name = tableZ2.column_name;

LEFT JOIN

Returns all the records from the left-most table, and the
matching records from the right-hand table. If there is no
match in the right-hand side, those fields will be left blank.

e.g., if a Product existed in the Product table but there was no
corresponding category in the Categories table, then it would
show up in the query results with an empty category.

Example: RIGHT (OUTER) Join

SELECT column_name(s)

FROM tablel

LEFT JOIN table2

ON tablel.column_name = tableZ2.column_name;

Returns all the records from the right-most table, and the
matching records from the left-hand table. If there is no
match in the left-hand side, those fields will be left blank.

e.g., in our product example where there were no matching
categories, you would retrieve all the categories but non-
matching products would be blank.

RIGHT JOIN

36

SQLite

Using a simple library-based relational database.

37

Introduction

SQLite (pronounced ESS-QUE-ELL-ITE) is a small-scale relational
DBMS. It is small enough for local, standalone use and is
preinstalled on Android and many operating systems.

"SQLite is a C-language library that implements a small, fast, self-
contained, high-reliability, full-featured, SQL database engine.

SQLite is the most used database engine in the world.
SQLite is built into all mobile phones and most computers..."

https://www.sglite.org/index.html

https://www.sqlite.org/index.html

Things to know about SQLite

* SQLite is a C-library, that can be installed practically anywhere.
* It’s preinstalled on macQOS, Linux and Android.

* Your database is stored on a local file-system.
* Should be accessible to your application.
* Your database is actually a single file e.g., ‘chinook.db".

* It’s intended for single-user use only.

* No authentication i.e. no username/password required.

* Secure the database the same way that you would a file e.g., encrypted on a
local hard drive, in the user’s home directory.

* It’s blisteringly fast and very lightweight.

Check the installation

Run the ‘sglite3" command to see if it’s preinstalled.
You can also download and open a sample database e.g., chinook.db

$ sqlite3

SQLite version 3.43.2 2023-10-10 13:08:14

Enter ".help" for usage hints.

Connected to a transient in-memory database.

Use ".open FILENAME" to reopen on a persistent database.

sqlite> .open chinook.db
sqlite> .tables

albums employees invoices playlists
artists genres media_types tracks
customers invoice_items playlist_track

sglite> select * from artists;

https://www.sqlitetutorial.net/sqlite-sample-database/

Installation

You can install the SQLite database/library under Mac, Windows or Linux.
1. Visit the SQLite Download Page. Download the binary for your platform.
2. To testit, launch it from a shell.

) Check before
$ sqlite3 installing, you
SQLite version 3.28.0 2019-04-15 14:49:49 e
Enter ".help" for usage hints. - '

Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.

$sqlite> .exit

41

https://www.sqlite.org/download.html

Useful Commands

To get a list of commands, run ‘sqlite3” and then enter ".help.

.open <filename>

Open database <filename>.

.database

Show all connected databases.

.log <filename>

Write console to log <filename>.

.read <filename>

Read input from <filename>.

.tables

Show a 1list of tables in the open database.

.schema <table>

SQL to display create stmt for a <table>.

.fullschema

SQL to create the entire database structure.

.quit

Quit and close connections.

42

$ sqlite3
SQLite version 3.28.0 2019-04-15 14:49:49
Enter ".help" for usage hints.

sqlite> .open chinook.db // name of the file
sqlite> .mode column // lines up data in columns
sglite> .headers on // shows column names at the top

sqlite> .tables

albums employees invoices playlists
artists genres media_types tracks
customers invoice_items playlist_track

sglite> .schema genres
CREATE TABLE IF NOT EXISTS "genres"

(
[GenreId] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
[Name] NVARCHAR(120)

);

43

Examples of selecting from a single table at a time:

sqlite> SELECT * FROM albums WHERE albumid < 5;

AlbumId Title ArtistId

1 For Those About To Rock
2 Balls to the Wall
3 Restless and Wild
4 Let There Be Rock

sglite> SELECT * FROM artists WHERE ArtistId = 1;

ArtistId Name

44

Example of a JOIN across two tables (based on a primary key, “Artistld’). You often
will have multiple WHERE clauses to join between multiple tables.

sglite> SELECT albums.AlbumId, artists.Name, albums.Title
FROM albums, artists
WHERE albums.ArtistId = artists.ArtistId
AND albums.AlbumId < 4;

AlbumId Name Title

1 AC/DC For Those About To Rock
2 Accept Balls to the Wall

3 Accept Restless and Wild

4 AC/DC Let There Be Rock

Accessing a database

Options for connecting your application to a relational database.

Using JDBC to connect

Kotlin can use the Java JDBC API to connect to any compliant database,
including SQLite.

* Most/all databases have a JDBC driver available.

* Google database + “JDBC” to locate drivers.

To create a database project in IntelliJ:
1. Create a Gradle/Kotlin project.

2. Modify the build.gradle.kts to include your database driver:
implementation(“org.xerial:sqlite-jdbc:3.50.3.0”) // see GitHub

3. Use the Java SQL package classes to connect and fetch data.

https://github.com/xerial/sqlite-jdbc

Creating a connection

This example uses a sample database from the SQLite tutorial.
e We first create a connection to the database.
* The URL designates the type of database, and location of the database file.

fun connect(): Connection? {

var connection: Connection? = null

try {
val url = "jdbc:sqlite:chinook.db” // URL format varies by driver
connection = DriverManager.getConnection(url)
println("Connection to SQLite has been established.")

} catch (e: SQLException) {
println(e.message)

}

return connection

48

Running a query

fun query(connection: Connection?) A{
try {
if (connection != null) A{

val sgl = "select albumid, title, artistid from albums where albumid < 5"

val query = connection.createStatement()

val results = query.executeQuery(sql)

println("Fetched data:");

while (results.next()) {
val albumId = results.getInt("albumid")
val title = results.getString("title")
val artistId = results.getInt("artistid")
println(albumId.toString() + "\t" + title + "\t" + artistId)

}

} catch (ex: SQLException) { Fetched data:
println(ex.message) 1 For Those About To Rock We Salute You.

! 2 Balls to the Wall
! 3 Restless and Wild
4 Let There Be Rock

49

Why you shouldn’t use JDBC like this

JDBC is a useful mechanism for connecting to remote databases, but making raw SQL calls
through the sql packages is error-prone:

* No type checking,
* No other safety mechanisms in-place.

* Requires us to explicitly convert between string data and class objects that are holding our data.
Not recommended, for any scenario.

A better-practice is to use a library that abstracts this functionality:
* Exposed is a JetBrains library for working with JDBC databases. It works with desktop but not Android.
* Room is a Google library for working with SQLite databases. It works with both desktop and Android.

50

https://github.com/JetBrains/Exposed
https://github.com/JetBrains/Exposed
https://developer.android.com/training/data-storage/room
https://developer.android.com/training/data-storage/room

Option 1: Exposed (JVM)

Exposed is a framework that provides a cleaner interface for working with
JDBC. It provides two approaches:

 Domain Specific Language (DSL) — if you want a query language,
» Data Access Objects (DAO) — classes to abstract DB access.

Exposed works through JDBC and supports most popular databases
including SQLite, H2, Oracle, Postgres...

e https://github.com/JetBrains/Exposed

https://github.com/JetBrains/Exposed
https://github.com/JetBrains/Exposed

Example: mm-desktop

DAO is a custom
class that accesses

class DBStorage(databaseName: String = ".mm.db"): IStorage { the underlying DB.
object TaskTable : IntIdTable() { IntldTabl
val position = integer("position") €.8., Intidfable
val title = varchar("title", length = 256)
val description = varchar("description", length = 256)
val dueDate = varchar("due_date", length = 16)
val tags = varchar("tags", length = 256)

¥
init {
Database.connect("jdbc:sqlite:$databaseName", "org.sqlite.JDBC")
transaction {
SchemaUtils.create(TaskTable, TaskTagTable, TagTable)
}
¥

// other methods

GitLab: demos > mm-desktop

52

https://git.uwaterloo.ca/cs346/demos/mm-desktop
https://git.uwaterloo.ca/cs346/demos/mm-desktop
https://git.uwaterloo.ca/cs346/demos/mm-desktop

Example: mm-desktop

override fun read(id: Int): Task? {
return transaction {
TaskTable

.selectAl11()

.where { TaskTable.id eq id }

.map { it ->

Task(

id = it[TaskTable.id].value,
position = it[TaskTable.position],
title = it[TaskTable.title],
description = it[TaskTable.description],
dueDate = it[TaskTable.dueDate],
tags = it[TaskTable.tags]

)
}.firstOrNull()

GitLab: demos > mm-desktop

We use the
TaskTable DAO to
fetch data and

return it as a Task
domain object.

53

https://git.uwaterloo.ca/cs346/demos/mm-desktop
https://git.uwaterloo.ca/cs346/demos/mm-desktop
https://git.uwaterloo.ca/cs346/demos/mm-desktop

When to use Exposed?

* Exposed is ideal for back-end or JVM solutions.
* e.g., a desktop application, or a web server accessing a database.

* Works great with coroutines, suspending functions.
* Highly recommended for web services that need DB access.

* It is NOT recommended for mobile development.
* JDBC drivers are not usually intended to run on Android.
* Android has its own (better performing) solution.

Option 2: Room (Android)

Google created Room in 2017, as an abstraction layer over SQLite.
Addresses runtime stability issues that you get when you work with low-level APIs:
e Compile time verification of SQL queries.

* Checks for missing tables and other entities to avoid runtime crashes.

It’s also designed around the use of Data Access Objects (DAO).
 Room + SQLite is Google’s recommended solution for Android.

https://developer.android.com/training/data-storage/room

@Entity

@Entity
* A Domain Object that reflects rows in a table (i.e., table structure).
 Effectively a data class with annotations for columns, keys.

@Entity

data class Contact(
@PrimaryKey(autogenerate = true) @ denotes an
val id: Int = 0, annotation. The
val firstName: String, compiler will replace
val lastName: String, these expressions
val phoneNumber: String with code.

56

@Dao

@Dao (Data access object)
* DAO that represents methods to access the database

@Dao
interface ContactDao {
@Upsert
suspend fun upsertContact(contact: Contact)

@Delete
suspend fun deleteContact(contact: Contact)

©OQuery("SELECT * FROM contact ORDER BY firstName ASC")
fun getContactsOrderedByFirstName(): Flow<List<Contact>>

©OQuery("SELECT * FROM contact ORDER BY lastName ASC")
fun getContactsOrderedByLastName(): Flow<List<Contact>>

suspend denotes a suspending
function; think of it as a
function that can suspend
itself while waiting for the
database function to
complete. We'll discuss this
more in the coroutines lecture.

57

@ Database

@Database
* DAO that represents the main access point to the database.

@Database(entities = [Contact::class], version = 1)
abstract class ContactDatabase: RoomDatabase() {

abstract val dao: ContactDao

}

58

Example: mm-android

MainActivity: binds things together

/*
MainActivity launches everything
The Application screen only accesses data through the ViewModel

*/

val database: TaskDb = getRoomDatabase(this)
val model = Model(database.taskDao())

val viewModel = TaskViewModel(model)

setContent {
MMTheme {
Application(viewModel)

59

Example: mm-android

TaskEntity: models a table.

@Entity(tableName = "task_table")

data class Task(.
@PrimaryKey(autoGenerate = true) val id: Int = O,
@ColumnInfo(name = "title") val title: String, This is just a
@ColumnInfo(name = "description") val description: String, | data class with
@ColumnInfo(name = "due_date") val dueDate: String, annotations
@ColumnInfo(name = "tags") val tags: String, added to it.
@ColumnInfo(name = "position") val position: Int,

60

Example: mm-android

TaskDao: interactions with the database

@Dao

interface TaskDao: IDao {
©@Query("SELECT * FROM task_table")
override fun getAll(): Flow<List<Task>>

©Query("SELECT * FROM task_table WHERE id = :id")
override suspend fun getById(id: Int): Task

©Query("DELETE FROM task_table")
override suspend fun deleteAll()

@Delete n
override suspend fun delete(task: Task)

@Insert . The Room annotation
override suspend fun insert(task: Task) - processor will generate code

@Update for these methods!
override suspend fun update(task: Task)

61

Example: mm-android

TaskDb: the database object

/*
* Room DB
* https://developer.android.com/training/data-storage/room

*/

@Database(entities = [Task::class], version = 1, exportSchema = false)
abstract class TaskDb : RoomDatabase(), IDb {

abstract override fun taskDao(): TaskDao
}.

fun getRoomDatabase(applicationContext: android.content.Context): TaskDb {
val builder = databaseBuilder<TaskDb>(
context = applicationContext,
) name = applicationContext.getDatabasePath("task.db").toString()
return builder
.fallbackToDestructiveMigrationOnDowngrade (true)
.setQueryCoroutineContext(Dispatchers.I0)
.build()

62

Example: mm-android

Application: using the data in a View

@Composable
fun Application(viewModel: TaskViewModel) A
val items by viewModel.getAll().collectAsState(initial = emptylList())

LazyColumn(modifier = Modifier.fillMaxSize().padding(16.dp)) {
items(items.size) { item ->

TaskItem(
task = items[item],
isSelected = (items[item] == viewModel.selectedTask),

onClick = { viewModel.selectedTask = items[item] },
onDoubleClick = {

viewModel.selectedTask = items[item]
viewModel.showEditDialog = true

63

Why you don’t want to use Room

* Room is SQLite only.

e SQLite isn’t really meant for remote data. It’s great as a local solution, but you
can’t easily host it online.

* If you need to share data, you want a large-scale solution
e e.g., PostgreSQL, Oracle or something similar.

Option 3: Native SDK (Remote)

If you want to run against an online database you probably want a hosted
solution i.e. a platform that provides access.

* Hosted platforms will typically provide an SDK/access method.

Online platforms that support Kotlin:
* Supabase has a Kotlin client library that you can use to access a Postgres database.
* Neon can be used with JDBC and also provides Postgres access.

You are free to use other platforms that provide a SQL database and have adequate
security in-place to restrict access.

* You do NOT want to put your data in an open and insecure database on the Internet.

65

https://supabase.com/
https://supabase.com/
https://supabase.com/docs/reference/kotlin/introduction
https://neon.com/
https://neon.com/
https://neon.com/docs/guides/java

Testing

How to test your database.

66

Testing strategy

* Your database is an example of an external dependency
* Your application accesses it, but it’s effectively a “black box”.
* You cannot directly control how data is managed.
* You cannot and should not test it directly.

 Alternatives to testing live data

* You want to avoid testing against live data!

 Alternatives
* Mock data storage
* Test database that mirrors your live database - challenge of getting the structure correct

GitHub: demos > courses uses Exposed and has DB unit tests.

Reference

Google. 2025. Room for Kotlin Multplatform

Lackner. 2025. The FULL Beginner Guide for Room in Android
Muntenescu. 2021. Kotlin: Using Room Kotlin APIs - MIAD Skills
Nilanjan. 2023. How to Access Database with Kotlin JDBC
SQLite. 2023. SQLite Documentation.

* Various. 2025. Chinook Database

* Various. 2025. MIS Northwind Database for SQLite

* W3Schools. 2023. Introduction to SQL.

68

https://developer.android.com/kotlin/multiplatform/room
https://www.youtube.com/watch?v=bOd3wO0uFr8
https://www.youtube.com/watch?v=vsDkhRTMdA0
https://www.youtube.com/watch?v=vsDkhRTMdA0
https://www.youtube.com/watch?v=vsDkhRTMdA0
https://levelup.gitconnected.com/
https://www.sqlite.org/docs.html
https://github.com/lerocha/chinook-database
https://github.com/jpwhite3/northwind-SQLite3
https://www.w3schools.com/sql/sql_intro.asp

