Code Reviews

CS 346: Application
Development



What is a “code Review”?

A code review is a peer review of code that helps developers ensure
or improve the code quality before they merge and ship it.

- gitlab.com

* A code review is not a design review.

* The intention of a code review is to review code that was
produced to solve a particular problem.

* They are optional in this course; may be mandatory @work.


https://about.gitlab.com/topics/version-control/what-is-code-review/

Project Proposal Final Release

X~

Design Writing Code Merge
Review Code Review Code

Code reviews are done at the end of a development iteration, before the code is merged.
This provides time to accept the changes or revise them before they are accepted.



Why perform code reviews?

Benefits to the Code

* Ensures consistency in design and implementation.
* Can lead to more optimal code (“more eyes on the problem”).

Benefits to the Team
 Collaborating and sharing new techniques.
* Reinforces mutual understanding of the code (team ownership).

 What is NOT beneficial?
* Using them to gatekeep code. Micro-managing changed to the codebase.



Code reviews are Challenging

Code reviews are challenging for both the person who has produced
the code, and the reviewer providing feedback.

e As the code producer:
. Ittr;s %tll:'eissml to have someone critique your work (“maybe I'm terrible at
is?!
* As the reviewer:
* Code reviews are time-consuming. You need to:
e Understand the problem (i.e. the underlying requirements).
* Understand the design (i.e. “is this the best way to design it?”).
* Review the code well enough to understand the implementation.




When to do code reviews

Save formal code reviews for major, significant features.
* Code producer needs to submit detailed documents + code ahead of time.
* Formal reviewer reviews everything and comes with written feedback.
» Some/all of the team participates - although only reviewer is expected to
provide detailed feedback.
For lightweight or simple features, consider an informal review.

* One developer asking another for ad hoc feedback:
* e.g., “Can you look at this and tell me if it’s clear?”

* e.g., “After lunch, would you mind reviewing this function for security implications?”

Pair programming is not a substitute for a formal code review but can reduce the need to
have a formal review in the first place.




Code Producer: Preparing for a Review

Document your design

e Summarize your understanding of the issue.
 State any assumptions that you’ve made.

e Describe your solution. Detail any issues or limitations to your approach.
* |f it will help clarify your design, generate one or more UML diagrams.

Document your code
* Provide guidance on how the code is structured; what you changed.

* Code comments should be injected to help readability and understanding.

* Add inline explanations for why something is designed the way that it is.
* Say “no” to formulaic design recipes (unless required to generate documentation).



Code Reviewer: Preparing for a Review

Review the materials that the code producer has created.
* This includes reviewing the code ahead of time.

Write a summary of your feedback.

* Tell the presenter that you have your feedback written down.

* Verbally present your concerns in the session and help find a resolution.
* Provide it at the end of the review.

Be respectful of the effort that someone has put in.
* Don’t just point out flaws; point out what they did well & what you like!
* Treat code reviews can be a learning opportunity for you and the entire team.



Running the Code Review Session

Book a meeting time. In-person is preferred.

* Code producer and reviewer are required attendees.

* Have a projector and a laptop to share design/code.

 Team members are optional (but should attend if they can).

If it’s just the producer/reviewer, they can discuss written feedback.

If other team members are present, I'd suggest the following format:

1. The code producer presents the problem & an overview of the solution.
2. The code producer presents the code - UML diagrams + high-level code.
3. The reviewer then presents their feedback one item at a time.

4. Outcome: the team decides (based on pros/cons).



Code Reviews in GitlLab

Code reviews are tied to the Merge Request workflow.
When you Create a Merge Branch,you select a single Reviewer.

* Reviewer and Coder communicate by adding comments to the issue.

* Coder can close the merge request when any problems have been
addressed.

55555

10



