
Code Reviews
CS 346: Application 

Development



What is a “code Review”?
A code review is a peer review of code that helps developers ensure 

or improve the code quality before they merge and ship it.
- gitlab.com

• A code review is not a design review. 
• The intention of a code review is to review code that was 

produced to solve a particular problem.
• They are optional in this course; may be mandatory @work.

2

https://about.gitlab.com/topics/version-control/what-is-code-review/


3

Code reviews are done at the end of a development iteration, before the code is merged. 
This provides time to accept the changes or revise them before they are accepted.



Why perform code reviews?

Benefits to the Code
• Ensures consistency in design and implementation.
• Can lead to more optimal code (“more eyes on the problem”).

Benefits to the Team
• Collaborating and sharing new techniques.
• Reinforces mutual understanding of the code (team ownership).

• What is NOT beneficial?
• Using them to gatekeep code. Micro-managing changed to the codebase. 

4



Code reviews are Challenging
Code reviews are challenging for both the person who has produced 
the code, and the reviewer providing feedback.
• As the code producer:

• It’s stressful to have someone critique your work (“maybe I’m terrible at 
this?!”)

• As the reviewer:
• Code reviews are time-consuming. You need to:
• Understand the problem (i.e. the underlying requirements).
• Understand the design (i.e. “is this the best way to design it?”).
• Review the code well enough to understand the implementation.

5



When to do code reviews
Save formal code reviews for major, significant features.

• Code producer needs to submit detailed documents + code ahead of time.
• Formal reviewer reviews everything and comes with written feedback.
• Some/all of the team participates - although only reviewer is expected to 

provide detailed feedback.

For lightweight or simple features, consider an informal review.
• One developer asking another for ad hoc feedback: 

• e.g., “Can you look at this and tell me if it’s clear?”
• e.g., “After lunch, would you mind reviewing this function for security implications?”

6

Pair programming is not a substitute for a formal code review but can reduce the need to 
have a formal review in the first place.



Code Producer: Preparing for a Review
Document your design
• Summarize your understanding of the issue. 

• State any assumptions that you’ve made.

• Describe your solution. Detail any issues or limitations to your approach.
• If it will help clarify your design, generate one or more UML diagrams.

Document your code
• Provide guidance on how the code is structured; what you changed.
• Code comments should be injected to help readability and understanding.

• Add inline explanations for why something is designed the way that it is.
• Say “no” to formulaic design recipes (unless required to generate documentation).

7



Code Reviewer: Preparing for a Review
Review the materials that the code producer has created. 
• This includes reviewing the code ahead of time.

Write a summary of your feedback. 
• Tell the presenter that you have your feedback written down. 
• Verbally present your concerns in the session and help find a resolution.
• Provide it at the end of the review.

Be respectful of the effort that someone has put in.
• Don’t just point out flaws; point out what they did well & what you like!
• Treat code reviews can be a learning opportunity for you and the entire team. 

8



Running the Code Review Session
Book a meeting time. In-person is preferred. 
• Code producer and reviewer are required attendees.
• Have a projector and a laptop to share design/code.
• Team members are optional (but should attend if they can). 

If it’s just the producer/reviewer, they can discuss written feedback. 
If other team members are present, I’d suggest the following format:
1. The code producer presents the problem & an overview of the solution.
2. The code producer presents the code - UML diagrams + high-level code.
3. The reviewer then presents their feedback one item at a time.
4. Outcome: the team decides (based on pros/cons).

9



Code Reviews in GitLab
Code reviews are tied to the Merge Request workflow.
When you Create a Merge Branch, you select a single Reviewer. 

• Reviewer and Coder communicate by adding comments to the issue.
• Coder can close the merge request when any problems have been 

addressed.

10


