
Packaging & Docker
CS 346: Application

Development

Deployment Challenges
Our goal is stable, consistent software that we can deliver to our customers.
Every version of the OS that we support, every different platform, every
conceivable configuration should work as expected.
However, if our development / testing / deployment environments don’t
match exactly, our software might not run properly!

2

• You might be missing files e.g., a config file that
you created manually on your development
machine.

• You may have incorrect versions of libraries e.g.,
different versions of DirectX installed.

• You may have a different versions of the OS.

How can we accomplish this?
Multiple environments, that you keep in sync.
• Development: system for builds.
• Testing: configurations representing each

environment that you support (i.e., supported
versions of macOS, Windows and so on).

• Deployment: a system where you might deploy
the software (live, running!)

How do you guarantee that each environment has
the correct versions of every piece of software that
your application uses or requires?
How do you handle this when you cannot control
the deployment environment? e.g., an end-user’s
home computer?

3

https://dzone.com/refcardz/deployment-
automation-patterns

http://www.apple.com/
http://www.apple.com/
http://www.apple.com/
http://www.apple.com/
http://www.apple.com/

Installers

4

Solution 1: Installers

An installer is an application that installs other software. e.g., setup on Windows.

Typical actions that they perform:
1. Create a folder for your application e.g., c:\Program Files\MyApp

2. Install your executable program, set permissions, register with the OS.

3. Install system libraries, register with the OS e.g., c:\Windows\System32

4. Setup initial preferences including application icons.

Note that these are very OS specific! Mac, Windows, Linux have different systems.

5

Gradle Packaging

Gradle can create installers for you.

1. Console applications
• Tasks > Build > distZip
• Creates a JAR file, and scripts to execute it (all in a ZIP file).

2. Desktop/JVM applications
• Tasks > Compose Desktop > packageDistribution
• Creates a Windows MSI, macOS DMG or Linux DEB.

3. Android
• Build > APK file (sideload)

6

Where installers Fail
Installers don’t always work. Sometimes an application won’t run after
installation. Often this happens because your operating conditions are
different from the conditions under which you developed and tested.
Examples:
• You may have tested on a different version of the operating system than

the user has, so your software may work differently on their system.
• Your application might rely on other software to be installed e.g., `sed`.
• The runtime environment might need to be configured in a specific way for

your application to run correctly e.g., environment variables holding
private keys, like AWS_SECRET='KASDJFTG_&JGJMHGF_!@GHHY@', or
specific network configurations.

How do we fix this? We specify and control the deployment environment.

7

Containerization
Controlling the deployment environment.

8

Solution 2: Virtualization
• Virtualization uses software to

create an abstraction layer over
computer hardware, enabling the
division of a single computer's
hardware components—such as
processors, memory and storage—
into multiple virtual machines
(VMs).
• Each VM runs its own operating

system (OS) and behaves like an
independent computer, even though
it is running on just a portion of the
actual underlying computer
hardware. – IBM (2024)

9

Diagram from TechTarget (2024)

https://www.ibm.com/topics/virtualization
https://www.techtarget.com/whatis/definition/virtualization-architecture

Virtualization is “Heavyweight”
Benefits?
• Resource efficiency: Physical hardware

can be shared across multiple
operating environments.

• Easier management: Virtual
“Machines” can be started up as
needed (backed up, moved).

• Control: We can use this to specify the
runtime environment!

Downsides?
• Fairly heavyweight. We’re hosting an

OS specifically for our application.
10

Diagram from TechTarget (2024)

https://www.techtarget.com/whatis/definition/virtualization-architecture

Containerization

11

One OS that hosts everything Dedicated virtual
machines

Lightweight containers?

Standalone: Software is installed directly into the host operating system.
• The OS must allocate and manage resources for each application.

Virtualization: Multiple virtual machines, each an abstraction of a physical machine.
• Each virtual machine is running a complete OS, allocated memory, CPU cycles etc.
• Can dictate how physical resources are shared across VMs e.g., split 128 GB RAM.
• Provides isolation of each application into its own OS instance for improved security.

Container: An isolated environment for running an application.
• Containers run on the same underlying host OS; lightweight vs. virtual machines.
• The host OS schedules CPU, resources to the containers not VMs.
• Smaller, easy to start/stop; can be deployed on any physical and virtual machines.

Comparison

12

Docker
Simple containerization.

13

Solution 3: Containerization (Docker)

Docker is an open platform for developing, shipping, and running applications.
Docker enables you to separate your applications from your infrastructure so you
can deliver software quickly. With Docker, you can manage your infrastructure in

the same ways you manage your applications.
https://docs.docker.com/get-started

14

Docker is a containerization platform.
• Create images that bundle your application and its environment together.
• Provides an online hub where you can distribute these images to other people.
• Provides the runtime engine to execute images.

Docker is NOT meant for end-users!
• It’s for people like us that need an efficient and consistent way to install servers/services.

https://docs.docker.com/get-started
https://docs.docker.com/get-started
https://docs.docker.com/get-started
https://docs.docker.com/get-started

Installation

Install Docker from installers on their website or your favorite
package manager. e.g., `brew install docker` on macOS.

15

https://docs.docker.com/get-started/get-docker/

https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/

16

$ docker version

Client: Docker Engine - Community
 Version: 27.3.1
 API version: 1.47
 Go version: go1.23.1
 Git commit: ce1223035a
 Built: Fri Sep 20 11:01:47 2024
 OS/Arch: darwin/arm64
 Context: desktop-linux

Server: Docker Desktop 4.34.3 (170107)
Engine:
 Version: 27.2.0
 API version: 1.47 (minimum version 1.24)
 Go version: go1.21.13
 Git commit: 3ab5c7d
 Built: Tue Aug 27 14:15:41 2024
 OS/Arch: linux/arm64
 Experimental: false
containerd:
 Version: 1.7.20
 GitCommit: 8fc6bcff51318944179630522a095cc9dbf9f353
runc:
 Version: 1.1.13
 GitCommit: v1.1.13-0-g58aa920
docker-init:
 Version: 0.19.0
 GitCommit: de40ad0

Architecture

• The Client is the system on which you are running Docker commands
The Docker Host is a background process that manages Docker runtime.
• An Image is a snapshop of your environment + application at a point in time.
• A Container is a running instance of your Image.

• The Registry is an online repository to store images for others to use.
17

https://www.geeksforgeeks.org

https://www.geeksforgeeks.org/introduction-to-docker-for-system-design/
https://www.geeksforgeeks.org/introduction-to-docker-for-system-design/

Workflow

• Step 1: Write a program
• Create a program that can be executed. For us, this will typically be a JAR file

that we can run using `java –jar filename.jar`.

• Step 2: Write a Dockerfile
• Create a configuration file that describes your environment.

• Step 3: Create a Docker Image
• Create an image which contains your environment (including dependencies)

and executable at a point-in-time.

• Step 4: Run your Docker Image

18

Step 1: Compile your program

fun main() {
 println(“Hello Docker!”)
}

19

Compile it to a JAR file, and copy the JAR file to a new/empty directory.

Write a complex and useful application (Hello.kt in this example).

$ kotlinc Hello.kt -include-runtime -d Hello.jar
$ java -jar Hello.jar
Hello Docker!

$ mkdir docker
$ cp Hello.jar docker/

Step 2: Dockerfile

20

Create a file named `Dockerfile` in the same directory as your JAR file.

start with this image, it includes a Linux kernel and Java JDK 17
FROM openjdk:17

import your Hello.jar file, and host in the app subdir.
at runtime, your filesystem will expose under /app subdir
COPY Hello.jar /app

set /app as your working directory and `cd` to it
WORKDIR /app

run the application
CMD java -jar Hello.jar

Step 3: Create an Image

21

Build an image in this directory (which uses the Dockerfile)

$ cd docker
$ docker build -t hello-docker .

`-t` tells Docker to tag it with a version (defaults to latest).
`hello-docker` is the name that will be assigned to our image.
`.` indicates that it should include the current directory's contents in the image.

Step 4: Run it

22

Check that it was created

$ docker images
$ REPOSITORY TAG IMAGE ID CREATED SIZE
 hello-docker latest a615e715b56d 7 second ago 455MB

Run it!

$ docker run hello-docker
Hello Docker!

Step 5: Publish it (Optional)

23

1. Create an account on Docker Hub if you haven't already. Login.
2. Create a repository to hold your images.
3. Tag your local image with your username/repository.
4. Push your local image to that repository.

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-docker latest f81c65fd07d3 3 minutes ago 455MB

$ docker tag f81c65fd07d3 jfavery/cs346

$ docker push jfavery/cs346:latest

https://hub.docker.com/

When to use this?
• Docker containers are extremely common when publishing web

services to the cloud! Publish a container and have
AWS/Firebase/some service host and run the container.
• You may need to map a port number to direct network traffic

from the host machine to the running container. e.g., below.

24

Dockerfile
FROM openjdk:17
VOLUME /tmp
EXPOSE 8080
ARG JAR_FILE=target/service-docker.jar
ADD ${JAR_FILE} app.jar
ENTRYPOINT ["java","-jar","/app.jar"]

