Packaging & Docker

CS 346: Application
Development

Deployment Challenges

Our goal is stable, consistent software that we can deliver to our customers.
Every version of the OS that we support, every different platform, every
conceivable configuration should work as expected.

However, if our development / testing / deployment environments don’t
match exactly, our software might not run properly!

* You might be missing files e.g., a config file that

you created manually on your development \ [\‘/] /
machine. _ -

* You may have incorrect versions of libraries e.g., IT WORKS
different versions of DirectX installed. ON MY MACHINE

* You may have a different versions of the OS.

“Things you should never say to a customer”.

How can we accomplish this?

Multiple environments, that you keep in sync.
* Development: system for builds.

 Testing: configurations representing each
environment that you support (i.e., supported
versions of macOS, Windows and so on).

* Deployment: a system where you might deploy
the software (live, running!)

How do you guarantee that each environment has
the correct versions of every piece of software that

your application uses or requires?

How do you handle this when you cannot control
the deployment environment? e.g., an end-user’s
home computer?

Tdeal world Deployments ne...

Dev

A

Prod

Deployment

GAS‘TSOPP'

J)eploy-to Prod

‘E\w'mgouhﬂepvk“

Prod

https://dzone.com/refcardz/deployment-

automation-patterns

http://www.apple.com/
http://www.apple.com/
http://www.apple.com/
http://www.apple.com/
http://www.apple.com/

Installers

Solution 1: Installers

An installer is an application that installs other software. e.g., setup on Windows.

Typical actions that they perform:

1.

2
3.
4

Create a folder for your application e.g., c:\Program Files\MyApp
Install your executable program, set permissions, register with the OS.
Install system libraries, register with the OS e.g., c:\Windows\System32

Setup initial preferences including application icons.

Note that these are very OS specific!l Mac, Windows, Linux have different systems.

Gradle Packaging

Gradle can create installers for you.

1. Console applications

e Tasks > Build > distZip

* Creates a JAR file, and scripts to execute it (all in a ZIP file).
2. Desktop/JVM applications

* Tasks > Compose Desktop > packageDistribution
e Creates a Windows MSI, macOS DMG or Linux DEB.

3. Android
e Build > APK file (sideload)

Where installers Fail

Installers don’t always work. Sometimes an application won’t run after
installation. Often this happens because your operating conditions are
different from the conditions under which you developed and tested.

Examples:

* You may have tested on a different version of the operating system than
the user has, so your software may work differently on their system.

* Your application might rely on other software to be installed e.g., sed".

* The runtime environment might need to be configured in a specific way for
your application to run correctly e.g., environment variables holding
private keys, like AWS_SECRET='KASDJFTG_&JGIMHGF_!|@GHHY@', or
specific network configurations.

How do we fix this? We specify and control the deployment environment.

Contalnerization

Controlling the deployment environment.

Solution 2: Virtualization

* Virtualization uses software to
create an abstraction layer over
computer hardware, enabling the
division of a single computer's
hardware components—such as
processors, memory and storage—
into multiple virtual machines
(VMs).

Each VM runs its own operating
system (OS) and behaves like an
independent computer, even though
it is running on just a portion of the
actual underlying computer
hardware. — 1BM (2024)

APP APP APP
APPLICATION

os os 0os

OPERATING SYSTEM VIRTUALIZATION LAYER

Traditional architecture Virtual architecture

Diagram from TechTarget (2024)

https://www.ibm.com/topics/virtualization
https://www.techtarget.com/whatis/definition/virtualization-architecture

Virtualization is “Heavyweight”

Benefits?

* Resource efficiency: Physical hardware
can be shared across multiple
operating environments.

e Easier management: Virtual
“Machines” can be started up as
needed (backed up, moved).

* Control: We can use this to specify the
runtime environment!

Downsides?

* Fairly heavyweight. We're hosting an
OS specifically for our application.

APP APP APP
APPLICATION
os os os

OPERATING SYSTEM VIRTUALIZATION LAYER

Traditional architecture Virtual architecture

Diagram from TechTarget (2024)

https://www.techtarget.com/whatis/definition/virtualization-architecture

Containerization

Operating System

Hardware

Fig 1. Standalone Hardware

One OS that hosts everything

>

VM 1

VM 2 VM 3

App 1

Libs

Libs Libs

Hypervisor

Operating System

Hardware

Fig 2. Virtualization

Dedicated virtual

machines

>

Container 1 Container 2 Container 3

App 2
Lis Lis

Container Runtime
Operating System
Hardware

Fig 3. Containerization

Lightweight containers?

11

Comparison

Standalone: Software is installed directly into the host operating system.
* The OS must allocate and manage resources for each application.

Virtualization: Multiple virtual machines, each an abstraction of a physical machine.
 Each virtual machine is running a complete OS, allocated memory, CPU cycles etc.

* Can dictate how physical resources are shared across VMs e.g., split 128 GB RAM.

* Provides isolation of each application into its own OS instance for improved security.

Container: An isolated environment for running an application.

e Containers run on the same underlying host OS; lightweight vs. virtual machines.
* The host OS schedules CPU, resources to the containers not VMs.

* Smaller, easy to start/stop; can be deployed on any physical and virtual machines.

12

Docker

Simple containerization.

13

Solution 3: Containerization (Docker)

Docker is an open platform for developing, shipping, and running applications.
Docker enables you to separate your applications from your infrastructure so you
can deliver software quickly. With Docker, you can manage your infrastructure in
the same ways you manage your applications.

https://docs.docker.com/get-started

Docker is a containerization platform.

* Create images that bundle your application and its environment together.

* Provides an online hub where you can distribute these images to other people.
* Provides the runtime engine to execute images.

Docker is NOT meant for end-users!
* It’s for people like us that need an efficient and consistent way to install servers/services.

https://docs.docker.com/get-started
https://docs.docker.com/get-started
https://docs.docker.com/get-started
https://docs.docker.com/get-started

Installation

o 1 76

Docker Desktop for Mac Docker Desktop for Windows Docker Desktop for Linux
A native application using the macOS A native Windows application which A native Linux application which delivers all
sandbox security model which delivers all delivers all Docker tools to your Windows Docker tools to your Linux computer.
Docker tools to your Mac. computer.

https://docs.docker.com/get-started/get-docker/

Install Docker from installers on their website or your favorite
package manager. e.g., brew install docker' on macOS.

15

https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/get-started/get-docker/

$ docker version

Client: Docker Engine - Community

Version: 27.3.1

API version: 1.47

Go version: gol.23.1

Git commit: cel223035a

Built: Fri Sep 20 11:01:47 2024
0S/Arch: darwin/armé4

Context: desktop-1linux
Server: Docker Desktop 4.34.3 (170107)
Engine:

Version: 27.2.0

API version: 1.47 (minimum version 1.24)
Go version: 01.21.13

Git commit: ab5c7d

Built: Tue Aug 27 14:15:41 2024
0S/Arch: linux/armé4
Experimental: false

containerd:

Version: 1.7.20

GitCommit: 8fcbbcff51318944179630522a095¢cc9dbf9+353
runc:

Version: 1.1.13

GitCommit: v1.1.13-0-9g58aa920
docker-init:

Version: 0.19.0

GitCommit: de40ad0

Architecture

-
Docker Architecture
Client GC[E1 Docker
--1----g9 Docker Daemon \ Ubuhtu
k S
Comamners Openstqck
Openstack A‘r/
Bl smeeess BUILD

https://www.geeksforgeeks.org

* The Client is the system on which you are running Docker commands
The Docker Host is a background process that manages Docker runtime.
* An Image is a snapshop of your environment + application at a point in time.
* A Container is a running instance of your Image.

* The Registry is an online repository to store images for others to use. .

https://www.geeksforgeeks.org/introduction-to-docker-for-system-design/
https://www.geeksforgeeks.org/introduction-to-docker-for-system-design/

Workflow

* Step 1: Write a program
* Create a program that can be executed. For us, this will typically be a JAR file
that we can run using ‘java —jar filename.jar".

 Step 2: Write a Dockerfile
* Create a configuration file that describes your environment.

 Step 3: Create a Docker Image

e Create an image which contains your environment (including dependencies)
and executable at a point-in-time.

 Step 4: Run your Docker Image

Step 1: Compile your program

Write a complex and useful application (Hello.kt in this example).

fun main() {
println(“Hello Docker!”)

}

Compile it to a JAR file, and copy the JAR file to a new/empty directory.

$ kotlinc Hello.kt -include-runtime -d Hello.jar
$ java -jar Hello.jar
Hello Docker!

$ mkdir docker
$ cp Hello.jar docker/

Step 2: Dockerfile

Create a file named "Dockerfile' in the same directory as your JAR file.

start with this image, it includes a Linux kernel and Java JDK 17
FROM openjdk:17

import your Hello.jar file, and host in the app subdir.
at runtime, your filesystem will expose under /app subdir
COPY Hello.jar /app

set /app as your working directory and ‘cd’ to it
WORKDIR /app

run the application
CMD java -jar Hello.jar

Step 3: Create an Image

Build an image in this directory (which uses the Dockerfile)

$ cd docker
$ docker build -t hello-docker .

"-t" tells Docker to tag it with a version (defaults to latest).
"hello-docker’ is the name that will be assigned to our image.
"."indicates that it should include the current directory's contents in the image.

21

Step 4: Run it

Check that it was created

$ docker images
$ REPOSITORY TAG IMAGE ID CREATED SIZE
hello-docker Tlatest ab615e715b56d 7 second ago 455MB

Run it!

$ docker run hello-docker
Hello Docker!

Step 5: Publish it (Optional)

1. Create an account on Docker Hub if you haven't already. Login.

2. Create a repository to hold your images.
3. Tag your local image with your username/repository.
4. Push your local image to that repository.

$ docker image 1s

REPOSITORY TAG IMAGE 1ID CREATED SIZE
hello-docker Tlatest £81c65fd07d3 3 minutes ago 455MB
$ docker tag f81c65fd07d3 jfavery/cs346

$ docker push jfavery/cs346:latest

23

https://hub.docker.com/

When to use this?

* Docker containers are extremely common when publishing web
services to the cloud! Publish a container and have
AWS/Firebase/some service host and run the container.

* You may need to map a port number to direct network traffic
from the host machine to the running container. e.g., below.

Dockerfile

FROM openjdk:17

VOLUME /tmp

EXPOSE 8080

ARG JAR_FILE=target/service-docker.jar
ADD ${JAR_FILE} app.jar

ENTRYPOINT ["java",6"-jar","/app.jar"]

24

