
Introduction
CS 346: Application

Development

Introduction
Dr. Jeffery Avery
• Associate Professor, Teaching Stream
• Cheriton School of Computer Science

Caroline Kierstead
• Instructional Support Coordinator

Teaching Assistants x 6
• See website

2

Prof. Avery aka “Jeff”

jeffery.avery@uwaterloo.ca
MC 6461

https://student.cs.uwaterloo.ca/~cs346
mailto:jeffery.avery@uwaterloo.ca

3

This course is a course about “Application Development”.

What makes this course different from the other software
development courses you’ve taken?

• CS 135 – Designing Functional Programs (Racket)
• CS 136 – Elementary Algorithm Design and Data Abstraction (C)
• CS 246 – Object-Oriented Software Development (C++)

Introduction

So far, you’ve mostly worked on small, single-purpose programs.
Text-based, command-line.

We’re building applications
Modern, consumer software
Software that solves problems for users!
• Can include mobile, desktop, web apps.
• e.g., Diablo, WhatsApp, Word.
• Graphical, media-rich, interactive.

Challenges
• Increased complexity, that requires some discipline.
• We can’t write the entire thing from-scratch!
• We can’t do it alone anymore.

4

What is an “application”?

5

6

Our definition of “application” has evolved

Software has evolved to keep pace with research, and hardware innovations.
What we build and how we build it has changed drastically over time.

Terminal applications dominated for decades. Console applications tend to be small, fast, and resource
friendly. They are still popular within specific domains e.g., system administration, software development.
All modern operating systems include shells where these applications can execute.

7

DEC VT-100 terminalTerminal applications

8

Apple MacIntosh IBM PC

Desktop applications are are still extremely popular!
They are suitable for tasks that require a lot of screen real-estate, or that need to be used for
long periods of time. They also support mouse/trackpad and other input devices which makes
them suitable for precise input as well. 9

10

We cannot overstate the impact of the internet &
www on software development and distribution.

Mobile applications are usually designed for casual, on-the-go use. They tend to favor content consumption over
creation, where touch-input isn’t a significant restriction. Otherwise, mobile and desktop paradigms are similar.

11

Present Day

12

Console
C++ (Python, C)
Imperative

Desktop
C++, Visual Basic
Object-Oriented
Graphics
Databases

Web
JS, HTML, CSS
Functional
Databases
Networking
Concurrency

Mobile
Kotlin, Swift
OO & Functional
Graphics
Databases
Networking
Concurrency

1950s - 1960s 1970s – 1980s 1990s– 2000s 2010s – 2020s

A “modern application”?

• Multiple application styles
• Console, Desktop, Mobile, Web

• Multiple operating systems
• Desktop: Windows, macOS, Linux
• Mobile: iOS, Android
• Web: Chrome, Firefox, Safari, Edge

• Network capable
• Internet, local network, Bluetooth
• Works with online services

• Graphical
• 2D, 3D, animations

• Rich interaction
• Keyboard, mouse, tablet, touch

13

The Spotify desktop, mobile, and tablet
apps. Via Spotify

How can we tackle something
this complex? It seems like a lot.

14

Software is written by teams

Most software is developed by teams: small (<5) to very large (100s).

• Team roles:
• Team lead (technical lead)
• Product manager (non-technical)
• Project manager (non-technical)
• Architect x n1
• Developers x n2
• Quality analyst x n3
• Writer x n4

• Communication skills are critical to being successful.
• You will need to coordinate your work with other team members!
• You will often need to communicate with customers, or non-technical people.

15

In your career, you may do many of these things!
Non-technical doesn’t mean uneducated about
CS, it just means your primary responsibility may
not be coding. e.g., developer advocates, Kotlin
documentation writers.

Successful teams follow “best practices”

• Software engineering practices provide better results.
• Project management practices: tracking the work that you are doing and are planning

on doing over time.
• Team practices: discussing and working through challenges together (not going solo).
• Development practices: ways to produce better designs, more flexible code, higher-

quality output.
• As a developer you want to avoid:

• Developing something with the expectation that you will replace it later.
• Rewriting someone else’s code because you know a “better way to do it”.
• Surprising your team (“I know I was supposed to get to this two days ago, but…”)

• What do we want?
• Careful, deliberate decisions, made by a team.
• The practiced use of best-practices that will help you produce “better” software.

16

Building software is really expensive

Every application that you build is both an asset and liability to your business.
• Asset: If it’s useful, customers will pay for it. It can be lucrative.
• Liability: It costs money to develop and maintain! More than you think. It’s

easy to overspend…

Minimizing your costs over time should be a primary goal.
• Every line of code needs to be reviewed, tested and maintained.
• Write less code! Solve the problem as efficiently as possible.
• Reduce “technical debt” i.e., the future cost of your software.

17

Recognize that libraries are (usually) highly
optimized, well-tested software!
Don’t create new functionality when you
can reuse someone else’s work.
• System libraries expose core

functionality to your application. Part of
the OS; “low level”. e.g., raw graphics,
network.

• User libraries sit “above” system
libraries to provide extra capabilities, or
a better abstraction. e.g., 3D graphics,
database.

18

Libraries == code reuse

Applications leverage the capabilities of the
underlying operating system, often through
system or user libraries.

A well-supported “tech stack” is critical
“[A technology stack aka “tech stack”] refers to a set of tools, programming

languages, and technologies that work together to build digital products or
solutions such as websites, mobile, and web apps”. - https://fullscale.io

Your tech stack includes
• Programming language
• System + user libraries available
• Your target operating system

Choice of technology stack will determine what capabilities you can leverage
in your application. e.g., building a graphical application in Rust sounds great,
until you realize that there is limited UI support.

20

https://fullscale.io/blog/top-5-tech-stacks/

22No tech stack does everything. You need to find the best “fit” for your situation.

So this is a lot. What specifically
are we doing in this course?

23

Course description
CS 346 Application Development
LAB, LEC, TST 0.50

Introduction to full-stack application design and development. Students will work
in project teams to design and build complete, working applications and services
using standard tools. Topics include best practices in design, development, testing,
and deployment.

Prerequisites: CS 246; Computer Science students only.
https://student.cs.uwaterloo.ca/~cs346/1259/

24

https://student.cs.uwaterloo.ca/~cs346/1259/

We build applications!
• Form teams of 4 people
• Design and develop an application

• You choose what application to build
• Focus on mobile or desktop applications
• Basic requirements for each platform

(we provide).
• Advanced features for your application

(that you propose).
• Bi-weekly team submissions

• Documentation, software releases
• Demo to your TA and get feedback.

• Get help from us in-class!
• Lectures + LAB sessions

25

See the Project Gallery

https://student.cs.uwaterloo.ca/~cs346/1259/content/project/gallery.html

Our tech stack is meant for this!

• Targets
• Desktop: Windows, macOS, Linux
• Mobile: Android (iOS)
• Web: (WASM)

• Kotlin programming language
• Modern language, with features desirable for application development
• One of very few choices if we want to support broad-targets.

• Libraries
• Compose: user-interface library for desktop/mobile/web.
• Exposed: library for working with SQL databases e.g., SQLite.
• Ktor: Kotlin-first networking library for web services.
• Koin: dependency injection library.

26

Kotlin is designed
for application
development

(front + backend)!

Brackets means “talk to Jeff before committing to this”

What will you learn?
• Development

• Application styles, Design, Testing – broadly applicable approaches.
• Learn an interesting and useful tech stack/modern programming language.
• Learn mobile development, graphical user interfaces, database connectivity.
• Apply relevant design practices i.e., design principles and patterns.

• Best practices
• Build software the way that you would in industry. Software development practices

e.g., code branching/merges, issue tracking, unit testing, software releases.
• Just like real-life, you will demo your progress!

• Teamwork
• Collaborate and coordinate work across a development team.

27

Choose to do
“everything”
or focus on
one area.

Course Website

28

https://student.cs.uwaterloo.ca/~cs346/1259/

https://student.cs.uwaterloo.ca/~cs346/1259/

Schedule

29

Lectures: in-class presentations

Labs: demos/examples, and free time

Assessment

30

You are graded primarily
based on your team project.

You will propose, design, and
iteratively deliver a project.

Team activities
• Everyone participates!
• Deadlines every 2 weeks

with a demo to your TA.
• Final release

Policies
Group Participation
• You must form teams by the end of week 2. We will help, but you are responsible.
• You must participate during the term! We can remove you from the course or adjust your

final grade if you fail to participate.
• You cannot take this course while on a (remote) work term. In-person only.
• You must attend every demo! You lose significant marks if you skip demos.

Code “sharing”
• You are allowed to use someone else’s code (up to 25 lines) with appropriate citation.
• You cannot use projects from previous terms or other courses.

31

32

Review the course website +
project requirements!

https://student.cs.uwaterloo.ca/~cs346/1259/

https://student.cs.uwaterloo.ca/~cs346/1259/

