Introduction

CS 346: Application
Development

Introduction

Dr. Jeffery Avery
» Associate Professor, Teaching Stream
* Cheriton School of Computer Science

Caroline Kierstead
* Instructional Support Coordinator

Teaching Assistants x 6
* See website

\ ®@ J

2t

Prof. Avery aka “Jeff”

jeffery.avery@uwaterloo.ca
MC 6461

https://student.cs.uwaterloo.ca/~cs346
mailto:jeffery.avery@uwaterloo.ca

Introduction

This course is a course about “Application Development”.

What makes this course different from the other software
development courses you’ve taken?

* (S 135 - Designing Functional Programs (Racket)

* (S 136 — Elementary Algorithm Design and Data Abstraction (C)
* (S 246 — Object-Oriented Software Development (C++)

So far, you’ve mostly worked on small, single-purpose programs.
Text-based, command-line.

We’'re building applications

Modern, consumer software ¥ @ &

ssssssssssss

Software that solves problems for users! @ L

eeeeeeeeeeeeeeeeeeee

nnnnnnnnnnnnnnnnnnnnnnn

e Can include mobile, desktop, web apps. c®

e e.g., Diablo, WhatsApp, Word. & a8
"
|

aaaaaaaaaaa

aaaaaaaaaa

e Graphical, media-rich, interactive. N

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

¥
a
o

‘‘‘‘‘‘‘‘‘
uuuuuuuuuu

Challenges

* Increased complexity, that requires some discipline.
* We can’t write the entire thing from-scratch!

* We can’t do it alone anymore.

What is an “application”?

Our definition of “application” has evolved

1940s

Von Neuman. ENIAC.

No programming languages.

Punch cards.

Fortran, LISP, Algol, COBOL

Functional programming.
Single programmers.

1950s

1980s

1960s

PL/1, Basic. Procedural. C++.

Single programmers. Object-oriented.

Command-Line Commercial software

Graphical interfaces

ava, C#.
C, Pascal. Internet.
Structured programming. Large teams.

Abstraction. Small teams.

) 1970s 1990s

Open Source rises!

2000s

JavaScript, Python, Ruby.
Scripting.

Distributed teams.
Internet dominates

RUST, Dart, Kotlin, Scala.

Web, Parallel computing,
Concurrency

Mobile applications

2010

Software has evolved to keep pace with research, and hardware innovations.
What we build and how we build it has changed drastically over time.

jaffe — mc [jaffe@Bishop.local]:~ — mc » zsh — 110x40

/.android

Hint: Completion works 24
~$ 25
1 genu |

Left File Command Options Right B

M vim book.toml

authors = ["Jeff Avery"]

language = "en"

multilingual = false

src = "src"

title = "CS 346 Application Development"

[preprocessor]

[preprocessor.admonish]
command = "mdbook-admonish"
assets_version = "3.0.2" # do not edit: managed by “mdbook-admonish install’

[preprocessor.embedify]

[preprocessor.hide]

hide = true
[loreprocessor.image-sizel]
command = "mdbook-image-size"

[preprocessor.mermaid]
command = "mdbook-mermaid"

[preprocessor.toc]

[LITYM book. toml R 28% In :19/67=9

Terminal applications

1940s

Von Neuman. ENIAC.

No programming langljages.

Punch cards.

1960s 1980s 2000s

PL/1, Basic. Procedural. Cht., JavaScript, Python, Ruby.
Single programmers. Object-oriented. Scripting.
Command-Line Commercial software Distributed teams.
Graphical interfaces Internet dominates

Fortran, LISPWgol, Java, CH. RUST, Dart, Kotlin, Scala.
Internet. Web, Parallel computing,
ti Large teams. Concurrency
Single ion. Small teams. Open Source rises! Mobile applications
1950s 1970s 1990s 2010

3
1

=2
B
£
F]
1EEE
3 EES
1
FiEE
f 2
i
£

DEC VT-100 terminal

Terminal applications dominated for decades. Console applications tend to be small, fast, and resource

friendly. They are still popular within specific domains e.g., system administration, software development.
All modern operating systems include shells where these applications can execute.

1940s 1960s 1980s ~) 2000s
| Von Neuman. ENIAC. PL/1, Basic. Procedfal. Ce. Javascript, Python, Ruby.
! Single programmerl | Object-oriented. Scripting.
| No programming languages. Command-Line | Commercial software Distributed teams.
| Punch cards. | Graphical interfaces Internet dominates

I'Iict‘OSl;Ft Word - SUGGSYLL.DOC

|3 4

Internet.
ﬂe 1 p programming.

1. Small teams.

Finder

e —— We've been asked to provide an Introduction to Electronic
——————————— Madl clacce Iove drafted s nreliminary cchednle mith

= File Edit |View | Insert Format Utilities HMacro Window
w” [BIMUURIE
=) @=12 & "
v R1bbo - i - l - l
v Ruler
v Status Bar H TREY
fFoptanles I RESEARCH
v Annotations : INC.
. v Field Codes
Trey Memo
System Folder Preferences...
6 items 173K in folder To: Rose L_Short ﬂeq?s hch, Heather Cross
From: Carol 0'Shaughnessy
Date: September §, 1989
Subject: Syllabus

Large teams.
Open Source rises!

RUST, Dart, Kotlin, Scala.

Web, Parallel computing,
Concurrency

Mobile applications

Hpage “# "'Page: '#'

'"}[RE1] The Monday classes have been rescheduled for
Tuesday.

{page “# "'Page: '#'

""}[REZ] I think it would sound hetter if we changed the

word

1990s 2010
==
+
Clipboard DOS Prompt
Accessories
= !
=
Terminal Notepad Recordel

iqun on/off

oggles the r
e L S
""" ¥ ¥ ¥ Bacy
O O . B SETUP =| CAWIND
ia WINDOWS [l =m] 8]
EDTEMP] [+
* [2]
|[Selected 1 file[s) (0 bytes) out of 76

e e

B0 All Themes
315 New

@ Recents
= Basic
4% Dynamic
(=) Minimal
& Bold

B3 Editorial
) Portfolio
&= Craft

3 Textured

Choose a Theme Wide (16:9) &

New ® O ® Fender American Ultra Stratocaster SSS in Arctic Pearl Ad - B K @ B6+v M

Des‘_:”p“on .) v Adjust Filters @ 6 Q9 O =
American Ultra is our most advanced series of guitars and basses

precision, performance and tone. The American Ultra Stratocaster ¥ \ ADJUST

Ultra rolled fingerboard edges for hours of playing comfort, and th \
highest register. A speedy 10"-14" compound-radius fingerboard
accurate soloing, while the Ultra Noiseless™ Vintage pickups and g
Recents possibilities - without hum. The sculpted rear body contours are ag
adds the neck pickup in to any switch position. This versatile, statd
playing to new heights.

Minimalist Light Minimalist D,
Light

My Presentati _ Color wTo)

Other features include sealed locking tuning machines, chrome haj o . =

— hardshell case. : Ao A A A AR
Color Gradient ption
Pictures + @ Black & White & G
Basic] L .

T S | e s

Retouch

Red-Eye

Basic White Basic Blac - " ¥ A " P White Balance
s i g S & Curves

| EEREN "N ' : : : @ Levels
N T S - = - > A Definition

> <% Selective Color

> [E] Noise Reduction

> A Sharpen

© Vignette

Desktop applications are are still extremely popular!

They are suitable for tasks that require a lot of screen real-estate, or that need to be used for
long periods of time. They also support mouse/trackpad and other input devices which makes
them suitable for precise input as well. 9

® W Platypus - Wikipedia

C & enwikipedia.org/wiki/Platypus

Contents [hide]

(Top)

Taxonomy and naming
Description

Distribution, ecology, and
behaviour

Evolution
Conservation
Human interactions
See also

Citations
References

External links

) WIKIPEDIA

The Free Encyclopedia

1940s
x [F v
6% »O0®

Q_ search Wikipedia Create account = Punch cards.

Von Neuman. ENIAC.

No programming languages.

1960s

PL/1, Basic. Procedural.

Single programmers.

Command-Line

1980s Q 2000s

G, JavaScript, Python, Ruby.
Object-oriented. Scripting.

Commercial software! Distributed teams.

Graphical interfaces Internet dominates

Platypus

Aicle Talk

A 101 languages v

Read View source View history

*a

From Wikipedia, the free encyciopedia

For other uses, see Platypus (disambiguation).
The platypus (Ornithorhynchus anatinus),”?) sometimes referred to as the duck-billed platypus, is a
semiaquatic, egg-laying mammal endemic to eastern Australia, including Tasmania. The platypus is the sole
living representative or monotypic taxon of its family (Or and genus
though a number of related species appear in the fossil record.

Platypus
Temporal range: 9-0 Ma.

Together with the four species of echidna, itis one of the five extant species of monotremes, mammals that lay
eqgs instead of giving birth to live young. Like other monotremes, it senses prey through electrolocation. Itis
one of the few species of venomous mammals, as the male platypus has a spur on the hind foot that delivers a
venom, capable of causing severe pain to humans. The unusual appearance of this egg-laying, duck-billed,
beaver-tailed, otter-footed mammal baffled European naturalists when they first encountered it, and the first
scientists to examine a preserved platypus body (in 1799) judged it a fake, made of several animals sewn
together.

Conservation status
—

‘The unique features of the platypus make it an important su
recognisable and iconic symbol of Australia. Itis culturally sid
who also used to hunt the animal for food. It has appeared a
reverse of the Australian twenty-cent coin, and the platypus i
Wales. Until the early 20th century, humans hunted the platy
range. Although captive-breeding programs have had only li

Al ~ Search Amazon.ca

Browsing History ~ Jeffery'sStore Registry BestSellers Books Giftldeas Customer Service Gift Cards New Releases Home

effects of pollution, it is not under any immediate threat. TR

As of 2020, the platypus is a legally protected species in all o
species in South Australia and vulnerable in Victoria. The spd
the IUCN, but a November 2020 report has recommended th
federal EPBC Act, due to habitat destruction and declining nt

" THEB
“Z

s

o tan
i i

p where you left off Continue shopping deals

M Gmail Q

Functional
. wogromming
}— Compose i | E ﬂ
Inbox e
0 inbox g »f Functional .
% Starred
Yuval Noah
Ha
© snoozed ot
» Important 21 Lessons
for the
> Sent 21" Century
of Kotlin Functional Programmin... :
® Team
3 More in Buy Again Seeall deals
New RFPs
® Projects Elizabeth Ren... Confirmation for... Nov 7
® Personal Jack FW: Have you ev... Nov7

Fortran, LISP, Algol, COBOL

Single

! C Pascal.

O 1950s

O 1970s

Small teams.

Java, CH. Dart, Kotlin, Scala.
Internet. Web, Parallel computing,
Large teams. Concurrency

Open Source rises!

O 19905

We cannot overstate the impact of the internet &
www on software development and distribution.

browser

web server

10

1940s 1960s 1980s 2000s

! Von Neuman. ENIAC. PL/1, Basic. Procedural. I CHt | JavaScript, Python, Ruby.
! Single programmers. | Object-oriented. | Scripting.
| No programming languages. Command-Line | Commercial software | Distributed teams.
. Punch cards. | Graphical interfaces © Internet W—\
| Fortran, LISP, Algol, COBOL { | Java, Ci. RUST, Dart, Kotlin, Scala.
H 1 G, Pascal. H Internet. Web, Parallel computing,
H H | large teams. Concurrency
| Single § ion. Small teams. | Open Source rises! Mobile applications
1950s O 1970s O 1990s 2010

Mobile applications are usually designed for casual, on-the-go use. They tend to favor content consumption over
creation, where touch-input isn’t a significant restriction. Otherwise, mobile and desktop paradigms are similar.

11

Present Day

Console Desktop Web Mobile
C++ (Python, C) C++, Visual Basic JS, HTML, CSS Kotlin, Swift
Imperative Object-Oriented Functional OO & Functional
Graphics Databases Graphics
Databases Networking Databases
Concurrency Networking

Concurrency

A “modern application”?

Multiple application styles
* Console, Desktop, Mobile, Web

Multiple operating systems
e Desktop: Windows, macOS, Linux
* Mobile: iOS, Android
* Web: Chrome, Firefox, Safari, Edge

Network capable
* Internet, local network, Bluetooth
* Works with online services

Graphical

* 2D, 3D, animations

Rich interaction
* Keyboard, mouse, tablet, touch

The Spotify desktop, mobile, and tablet
apps. Via Spotify

13

How can we tackle something
this complex? [t seems like a lot.

Software is written by teams

Most software is developed by teams: small (<5) to very large (100s).

* Team roles: N
* Team lead (tEChnical lead)] In your career, you may do many of these things!
* Product manager (non'teChmcal) Non-technical doesn’t mean uneducated about
* Project manager (non-technical) CS, it just means your primary responsibility may
* Architect x n, ~ not be coding. e.g., developer advocates, Kotlin
° Developers XN, documentation writers.
e Quality analyst x n;
* Writer x n, _

 Communication skills are critical to being successful.

* You will need to coordinate your work with other team members!
* You will often need to communicate with customers, or non-technical people.

Successful teams follow “best practices”

e Software engineering practices provide better results.

* Project management practices: tracking the work that you are doing and are planning
on doing over time.

» Team practices: discussing and working through challenges together (not going solo).

* Development practices: ways to produce better designs, more flexible code, higher-
quality output.

* As a developer you want to avoid:
* Developing something with the expectation that you will replace it later.

* Rewriting someone else’s code because you know a “better way to do it”.
 Surprising your team (“I know | was supposed to get to this two days ago, but...”)

* What do we want?
 Careful, deliberate decisions, made by a team.
* The practiced use of best-practices that will help you produce “better” software.

B U | | d | N GTA 6 could have a budget ranging between $1 billion to $2 billion, per
a report from Insider Gaming. This would make GTA 6 the most
expensive game to ever be made. Development of the game likely
Every appli¢ started after the release of GTA 5 in 2013 and was ramped up following
 Asset: |f i{ the release of Red Dead Redemption 2 in 2018. A game that has been
in development as long as GTA 6, likely including a new GTA Online

* Liability: |
and backed by a big budget for voice acting and music licensing,

easy to o\

would cost a lot to warrant an $80 price.

If you're interested in creating an app, you've probably considered What 1t Will COst.

Most industry reports say the cost of building a mobile app varies from $30,000 to
$250,000, with the average cost coming in at $171,450. Nonetheless, these numbers
are only an estimate since the actual cost can change quite a bit depending on the

job.

17

Libraries == code reuse

Recognize that libraries are (usually) highly
optimized, well-tested software!

Don’t create new functionality when you
can reuse someone else’s work.

» System libraries expose core
functionality to your application. Part of
the OS; “low level”. e.g., raw graphics,
network.

* User libraries sit “above” system
libraries to provide extra capabilities, or
a better abstraction. e.g., 3D graphics,
database.

Qe

User [(]

Interface Users
. |]

Library Applications
Interface (editors, games, etc.)
User Mode
System Call System Libraries
Interface ((open, close, read, write, fork, etc) !
n
Operating System Kernel Mode
(processes, memory, filesystem, 1/0, etc)

u

Hardware
(CPU, memory, disks, devices, etc.)

Applications leverage the capabilities of the
underlying operating system, often through
system or user libraries.

A well-supported “tech stack” is critical

“IA technology stack aka “tech stack”] refers to a set of tools, programming
languages, and technologies that work together to build digital products or
solutions such as websites, mobile, and web apps”. - https://fullscale.io

Your tech stack includes

* Programming language

e System + user libraries available
* Your target operating system

Choice of technology stack will determine what capabilities you can leverage
in your application. e.g., building a graphical application in Rust sounds great,
until you realize that there is limited Ul support.

https://fullscale.io/blog/top-5-tech-stacks/

Haskell Scala

o st N

: Backend
NextJS Python
WEB : SRS ..

'JS/TS C#[.NET SWIft/SWIftUI oS,
Angular , C++/Qt KotIm/Compose
React .
Svelte K)
FITML/QSS :' Dart/F'lutter

Andr0|d

. .
. o
* e e e

.
. .
ooooooo

No tech stack does everything. You need to find the best “fit” for your situation.

22

So this is a lot. What specifically
are we doing in this course?

Course description

CS 346 Application Development
LAB, LEC, TST 0.50

Introduction to full-stack application design and development. Students will work
in project teams to design and build complete, working applications and services

using standard tools. Topics include best practices in design, development, testing,
and deployment.

Prerequisites: CS 246; Computer Science students only.
https://student.cs.uwaterloo.ca/~cs346/1259/

24

https://student.cs.uwaterloo.ca/~cs346/1259/

We build applications!

* Form teams of 4 people

* Design and develop an application
* You choose what application to build

* Focus on mobile or desktop applications

 Basic requirements for each platform
(we provide).

» Advanced features for your application
(that you propose).
* Bi-weekly team submissions
* Documentation, software releases
* Demo to your TA and get feedback.
* Get help from us in-class!
* Lectures + LAB sessions

Welcome, Matthew Sekirin

[] Y4

Faocos

Assigned to You

All Chores

Garbage
Assignee: David Li

> WHEN FULL

rrrrr s}
......... FD

Car Wash Schedule
April 2025

Mon Tue Wed Thu Fri Sat Sun

31 1 2 3 4 5 @

7 8 “ 10 11 12 13
15 16 17 18 19 20

22 23 24 25 26 27

See the Project Gallery

25

https://student.cs.uwaterloo.ca/~cs346/1259/content/project/gallery.html

Our tech stack is meant for this!

* Targets
* Desktop: Windows, macOS, Linux
* Mobile: Android (iOS) Brackets means “talk to Jeff before committing to this”

* Web: (WASM)

* Kotlin programming language
* Modern language, with features desirable for application development
* One of very few choices if we want to support broad-targets.

e Libraries

» Compose: user-interface library for desktop/mobile/web. Kotlin is designed
* Exposed: library for working with SQL databases e.g., SQLite. for application
 Ktor: Kotlin-first networking library for web services. development

(front + backend)!

* Koin: dependency injection library.

What will you learn?

* Development
* Application styles, Design, Testing — broadly applicable approaches.

* Learn an interesting and useful tech stack/modern programming language. Choosego do
. . : . “everything”

* Learn mobile development, graphical user interfaces, database connectivity, <«— or focts of

* Apply relevant design practices i.e., design principles and patterns.

one area.
* Best practices

* Build software the way that you would in industry. Software development practices
e.g., code branching/merges, issue tracking, unit testing, software releases.

* Just like real-life, you will demo your progress!

e Teamwork

* Collaborate and coordinate work across a development team.

Course Website

O CS 346 Fall 2025

Syllabus v
Overview
Text & Materials
Assessment
Policies
Contacts

Lectures v
Sections
Schedule
Agenda
Quizzes

Project v
Overview
Requirements

Project Teams

https://student.cs.uwaterloo.ca/~cs346/1259/

Course Info Reference About

Course Info > Lectures > Agenda

Agenda

What's covered each week. This page will be updated as the term progresses.

Week 01: Introduction

Wed Lecture

e |ntroduction ®
e Agile &SDLC B

e Project guidelines & requirements &
Fri Lab

e Teamwork @

e Setup GitLab &

28

https://student.cs.uwaterloo.ca/~cs346/1259/

Lectures: in-class presentations
Schedule

: demos/examples, and free time

Course Info > Lectures > Schedule

Schedule

Week Date Type Details
Week 01: Introduction Wed Sept 3 LEC Introduction. Agile & SDLC.
Fri Sept 5 LAB Teamwork. Setup GitLab.
DUE n/a
Wed Sept
Week 02: Kotlin 10 P LEC Learning Kotlin. Documentation.
Fri Sept 12 LAB Install the toolchain. Setup the repository.

DUE Setup due Fri @ 6:00 PM ik

29

Assessment

You are graded primarily
based on your team project.

You will propose, design, and
iteratively deliver a project.

Team activities

* Everyone participates!

* Deadlines every 2 weeks
with a demo to your TA.

* Final release

Individual Grade (30%)

Component What it addresses

Quizzes Understanding lecture content. 5 quizzes.

Participation Level of contributions to the project.

Team Grade (70%)

Item

Proposal

Sprint 1: Architecture

Sprint 2: User Interface

Sprint 3: Databases

Sprint 4: Final Review

Software Release

What it addresses

Project identified, requirements captured.
Features complete; process followed.
Features complete; process followed.
Features complete; process followed.
Features complete; process followed.

Completed project, including documentation.

Grade

5x4% =20%

10%

Grade

10%

5%

5%

5%

5%

40%

30

Policies

Group Participation
* You must form teams by the end of week 2. We will help, but you are responsible.

* You must participate during the term! We can remove you from the course or adjust your
final grade if you fail to participate.

* You cannot take this course while on a (remote) work term. In-person only.

* You must attend every demo! You lose significant marks if you skip demos.

Code “sharing”
* You are allowed to use someone else’s code (up to 25 lines) with appropriate citation.

* You cannot use projects from previous terms or other courses.

Review the course website +
project requirements!

https://student.cs.uwaterloo.ca/~cs346/1259/

32

https://student.cs.uwaterloo.ca/~cs346/1259/

