
Agile & SDLC
CS 346 Application

Development

1

How to build software

People often think that building software is like building anything else,
e.g., a car, or a refrigerator.
At first glance, this seems reasonable: software is something that you
manufacture. Your project includes determining requirements,
designing and building something. You might envision a process that
looks something like this:

2

How to build software

Planning - “What are our goals?”, “What is the budget?”, “Who is working on it?”
Requirements - “Who are our users?”, “What problem are we solving?”
Design - “What technical constraints exist?”, “What might it look like?”
Implementation - “How do we build it efficiently?”
Testing - “Does it meet specifications?”
Deployment - “How do we sell it and maintain it properly?”

3

Process models

We use the term process model to describe this structure of activities.
“A process model defines the complete set of activities that are
required to specify, design, develop, test and deploy a product, and
describes how they fit together.“

A software process model is a process model adapted to describe how
we might build software systems. We also refer to a software process
model as the Software Development Lifecycle (SDLC).

4

SDLC: Waterfall

In a 1970 paper, Winston Royce described
a process model that envisions software
production as a series of cascading steps.
He dubbed this this Waterfall Model:
• Steps represent required work.
• Each step is “owned” and managed by a

separate person or group.
• Steps need to be performed in order.
• Gatekeeping enforced e.g., requirements

approval before design.
5

Challenges

This doesn’t work very well. Why?
• Decisions made early in the process may

need to be revisited. e.g., customer
requirements.
• Your understanding of a problem will evolve.

You will sometimes need to iterate to make a
final decision e.g., uncovering issues in
development that should change the design.
• Building silos discourages collaboration, and

leads to limited decisions e.g., QA will have
insights on what designs are testable.

6

New Process Models

By the mid-1990s, there was a widespread recognition that this way of
building software just didn’t work:
• Developers were frustrated by rigid processes/changing requirements.
• Business owners were frustrated by the inability to make changes to

projects once they were past the requirements phase.
• Projects were being delivered late and/or over-budget.

Alternate models were devised
• Extreme Programming (XP), Scrum, Lean, Rational Unified Process (RUP),

Crystal Clear and others.
7

8

By the late 1990s, there was substantial discussion around how to create a “better”
process model. Models tend to focus on different areas of the software process.

https://agilemanifesto.org/
9

https://agilemanifesto.org/

The Agile Manifesto (2001)

Individuals and interactions (over processes and tools): Emphasis on
communication with the user and other stakeholders.
Working software (over comprehensive documentation): Deliver small
working iterations of functionality, get feedback and revise based on
feedback. You will NOT get it right the first time.
Customer collaboration (over contract negotiation): Software is a
collaboration between you and your stakeholders. Plan on meeting and
reviewing progress frequently. This allows you to be responsive and correct
your course early.
Responding to change (over following a plan): Software systems live past the
point where you think you’re finished. Customer requirements will change as
the business changes.

10

What is Agile?

“Agile Software Development” isn’t a single process, but rather an approach to
software development that encompasses this philosophy. It encourages team
structures and attitudes that make communication easier (among team
members, business-people, and between software engineers and their
managers). It emphasizes rapid delivery of operational software but also
recognizes that planning has its limits and that a project plan must be flexible.

— Pressman & Maxim 2020.

There are many different Agile models. We’ll focus on two: Scrum, and XP.

11

Common factor: iterative development
Agile models are iterative.
They recognize that the cost of change
increases nonlinearly as a project
progresses.
• Cost includes time, effort and money.
• The later you recognize a problem, or

introduce a new requirement, the
costlier it will be.

Iterative approaches encourage you to
make required changes earlier in the
process, when the cost of making
changes is lower.

12

What does iterative development look like?

Getting feedback at every stage of development.
• Identify incorrect requirements earlier, so that you don’t waste time

designing something that isn’t needed.
• Identify poor designs earlier, before you waste time refining and polishing

and implementing the wrong design.
• Identify failing tests earlier, so that you can correct them through design

changes and not just hacking together a fix.

Focus on delivering one feature at-a-time and getting immediate feedback.
• Feedback from customer, development team, stakeholders.

13

Agile SDLC: first draft

An iterative SDLC could look like this:
• Planning and requirements are done up-

front, although we can revisit them.
• We iterate over design, implementation

and testing.
• You can “go backwards” at any time.
• Testing often requires design changes;

implementation may impact requirements.

• Deployment happens after a cycle.
• This entire cycle can be repeated.

14

Scrum as an iterative model
Scrum is a popular Agile process models that focuses on the design-
development cycle.

Scrum breaks down a project into fixed-length iterations called sprints (where
each spring is typically 2-4 weeks in length). A sprint is a focused development
cycle where you design-develop-test several features and release them in a
fully-tested and shippable product at the end of each sprint.

15

16

Product Backlog is a list of all possible features and changes that could be considered. Collected from the
customer’s feedback, or ideas that the team has (i.e. during the Requirements phase).

Product Owner is the person responsible for gathering requirements and placing in the product backlog (i.e.
Product Manager or Customer).

Sprint Backlog is the set of features that are assigned to a sprint. It’s “in-scope” for that sprint.

Scrum Master is the person that helps facilitate work during the sprint (sim. to a “team lead”).

List of all potential
features or changes
to consider.

Daily scrum == Daily standup meeting
1.What did you do since the last meeting?
2.What are you doing today?
3.What obstacles are in your way?

Scrum Flow

In this course, sprints are two-weeks long, and we will have four sprints in total (i.e. 4 x 2-
week sprints). Each sprint includes the following activities:

1.Feature Selection. On the first day of the Sprint, the team meets and selects features.
Issues are moved from the Product Backlog into the Sprint Issues list and assigned. You
are committing to work that you can complete in the upcoming sprint.

2.Implementation. During the sprint, the team iterates on their features. As each feature is
completed, unit tests are written/passed. When complete, the issue is closed.

3.Evaluation. At the end of the Sprint, the team meets with the Product Owner to demo
what they have completed and get feedback. Only completed work is shown. Issues that
are not completed are moved back into the Product Backlog to be reconsidered.

+ Retrospective. The team should also reflect on what worked well, and what could
improve. You should always be looking for ways to improve how you manage your project.

17

Extreme Programming (XP) Practices

XP is an Agile methodology focused on best-practices for programmers. It aims to
produce higher-quality software and a higher quality-of-life for the development
team.

18

What next?

We’ll continue to discuss activities and
practices that are relevant to this process.
• We’ll focus mainly on design,

implementation and testing activities
If you want to learn more about
requirements methodologies,
recommended courses include:
• CS 445 Software Requirements.
• CS 449 Human-Computer Interaction.

20

Week 01: What to do this week?
Register for the course.
• Talk to me if you are not registered. I’ll override you if I can.
• You must attend in-person; you cannot take this class remotely.

Form teams! See Project > Guidelines
• Teams of 4 people.
• Must all be in the same sections. Talk to me if you wish to switch sections.
• A mix of skills in a team is useful! You want to be well-rounded.
• Find people that share your interests and have a similar work ethics/schedule.
• When formed, follow the signup instructions.

21

http://localhost:1313/~cs346/1259/course-info/project/guidelines/

Reference

• Robert C. Martin. 2003. Agile Software Development: Principles,
Patterns and Practices. Pearson. ISBN 978-0135974445.
• Pressman & Maxim. 2014. Software Engineering: A Practitioner’s

Approach. McGraw Hill. ISBN 978-0078022128.
• Schwaber & Sutherland. 2020. The Scrum Guide. Online.

22

https://scrumguides.org/scrum-guide.html

