
Software Engineering
CS 346 Application 

Development

1



Credits

• Some content adapted from: Sommerville. 2021. Engineering 
Software Products: An Introduction to Modern Software Engineering. 
Pearson. ISBN 978-1292376356.

2

https://www.amazon.ca/Engineering-Software-Products-Ian-Sommerville/dp/013521064X
https://www.amazon.ca/Engineering-Software-Products-Ian-Sommerville/dp/013521064X


Software engineering

“Software engineering is a branch of both computer science and 
engineering focused on designing, developing, testing, and 
maintaining software applications …
A software engineer applies a software development process, which 
involves defining, implementing, testing, managing, and maintaining 
software systems, as well as developing the software development 
process itself.” -- Wikipedia

“The application of a systematic, disciplined, quantifiable approach to 
the development, operation, and maintenance of software.” -- SEBoK

3

https://en.wikipedia.org/wiki/Software_engineering
https://sebokwiki.org/wiki/Software_Engineering_(glossary)
https://sebokwiki.org/wiki/Software_Engineering_(glossary)


Software projects
Start at the beginning…

4



Software Projects

• We’re going to talk about designing, building, deploying software.
• When building software, we have a set of steps that we would 

normally follow. A software project is a planned activity, following 
these steps, which results in the delivery of a software product. 
• The software development process is often represented like this, 

where each step is completed before the next one starts. The final 
step produces a software product:

5



Steps in a Software Project

• Planning: Determining up-front costs.
• Requirements: What do we want to build? Who will buy it?
• Design: How do we build it? What constraints do we have?
• Implementation: Building it quickly and efficiently. 
• Testing: Ensuring that it works before we sell it. 
• Deployment: Delivering to customers (and getting paid).

6



Software projects vs. products

• Software production in the 1960s and 70s focused on bespoke projects: 
custom software for a specific customer.
• Customers would define requirements and then engage an engineering firm to 

deliver their software. These types of projects still exist e.g., banking. 

• Software production since the 1980s has mostly shifted building generic 
software products that are useful to a range of customers (more profit).
• Application software fits into this category and can include large-scale business 

systems (e.g. MS Excel), personal products (e.g. Discord) and even phone apps and 
games (e.g. Flappy Bird).

7Who does this? Software engineers i.e. us.



PROJECT software engineering

8

The customer is the 
primary driver of 
software requirements.



PRODUCT software engineering

9

Most commercial 
development now 
focuses on generic 
solutions. The 
developer decides who 
to target, and what 
features to deliver to 
them.



• The starting point for product development is a business opportunity 
that is identified by individuals or a company. 
• The company decides to develop a software product to take advantage of this 

opportunity and sell this to (hopefully many) customers.
• They design and implement a set of software features that take advantage of 

this opportunity and that will be useful to customers.

• All decisions are being made by the developer!
• No external customer is paying for anything (yet).
• The company is responsible for deciding on the development timescale, what 

features to include and when the product should change. 
• Rapid delivery of software products is essential to capture the market.

Product Development

10



• Similar situations exist for other types of software development:
• Student projects: Individuals or student groups develop software 

as part of their course. Given an assignment, they decide what 
features to include in the software.
• Research software: Researchers develop software to help them 

answer questions that are relevant to their research.
• Internal tool development: Software developers may develop 

tools to support their work - in essence, these are internal 
products that are not intended for customer release.

Comparable Situations

11



• The developer needs to make product decisions that drive the 
product direction:
• Platform: A software (or software + hardware) product that includes 

functionality so that new applications can be built on it. e.g., Facebook with 
‘Facebook Apps’, or Playstation, or Windows are all platforms.

• Software product line: A set of software products that share a common core. 
Each member of the product line includes customer-specific adaptations and 
additions for requirements that a generic product couldn’t meet.
• e.g., health care systems that need custom integrations.
• e.g., CarPlay audio integration into car systems.

• External customers have little impact (although the developer may try 
and find prospective customers and ask for input!)

Product Development Decisions

12



• Stand-alone: The software executes entirely on the customer’s computers. 
e.g., calculator, MS word, VS Code.
• Hybrid: Part of the software’s functionality is implemented on the 

customer’s computer, but some features are implemented on remote 
servers e.g., a collaborative drawing application, or a coop online game.
• Software service: All the product’s features are implemented on the 

developer’s servers and the customer accesses these through a browser or 
a mobile app. e.g., Gmail, Instagram.

• These are primarily product decisions, since they depend on what features 
you need to implement. (More on this later).

Software Execution Models

13



Software execution models

14



Software Process Models 
Let’s think more about building products.

15



Software process models
The linear model we presented was a very 
common view of software development 
until recently. It is also known as the 
Waterfall Model (Royce 1970):
• Each step is “owned” and managed by a 

separate person or group.
• Each step represents significant work.
• Steps need to be performed in order.
• Gatekeeping enforced e.g., requirements 

approval before design.

16



Challenges

This doesn’t work very well. Why?
• Decisions made early in the process may 

need to be revisited. e.g., customer 
requirements.
• Your understanding of a problem will evolve. 

You will sometimes need to iterate to make a 
final decision e.g., uncovering issues in 
development that should change the design.
• Building silos discourages collaboration, and 

leads to limited decisions e.g., QA will have 
insights on what designs are testable.

17



18

The Agile Manifesto (2001) https://agilemanifesto.org

https://agilemanifesto.org/
https://agilemanifesto.org/


We are uncovering better ways of developing 
software by doing it and helping others to do it. 

Through this work, we have come to value:

Individuals and interactions over processes and tools;

Working software over comprehensive documentation;

Customer collaboration over contract negotiation;

Responding to change over following a plan.

That is, while there is value on the items on 
the right, we value the items on the left more.

Manifesto for Agile Development

19



• Virtually all modern software products are developed using an Agile 
approach.
• Software products must be brought to market quickly 

• Rapid software development and delivery is essential.
• Need to be flexible (“Agile”, get it?)

• Agile software engineering focuses on delivering functionality quickly, 
responding to changing product specifications and minimizing 
development overheads. 
• Many ‘agile methods’ have been developed. 

• There is no ‘best’ agile method or technique.
• It depends on who is using the technique, the development team and the type of 

product being developed

Agile software engineering

20



• Plan-driven development evolved to support the engineering of large, long-
lifetime systems (such as aircraft control systems) where teams may be 
geographically dispersed and work on the software for several years.
• This approach is based on controlled and rigorous software development processes 

that include detailed project planning, requirements specification and analysis and 
system modelling.

• However, plan-driven development involves significant overhead and does not 
support the rapid development and delivery of software.

• Agile methods were developed in the 1990s to address this problem. 
• These methods focus on the software rather than its documentation, develop 

software in a series of increments and aim to reduce process bureaucracy as much as 
possible.

Agile methods

21



• All agile methods recognize the importance of incremental 
development and delivery. 
• Product development focuses on the software features, where a 

feature does something for the software user.
• With incremental development, you start by prioritizing the features 

so that the most important features are implemented first. 
• You only define the details of the feature being implemented in an increment. 
• That feature is then implemented and delivered. 

• Users surrogate users can try it out and provide feedback to the 
development team. You then go on to define and implement the next 
feature of the system.

Key concept: Incremental development

22



Incremental development

23



• Choose features to be included in an increment
Using the list of features in the planned product, select those features that can be 
implemented in the next product increment.

• Refine feature descriptions
Add detail to the feature descriptions so that the team have a common understanding of 
each feature and there is sufficient detail to begin implementation.

• Implement and test
Implement the feature and develop automated tests for that feature that show that its 
behaviour is consistent with its description.  

• Integrate features and test
Integrate the developed feature with the existing system and test it to check that it works in 
conjunction with other features.

• Deliver system increment
Deliver the system increment to the customer or product manager for checking and 
comments. If enough features have been implemented, release a version of the system for 
customer use.

Incremental development activities

2
4



• Involve the customer
Involve customers closely with the software development team. Their role 
is to provide and prioritize new system requirements and to evaluate each 
increment of the system. 
• Embrace change

Expect the features of the product and the details of these features to 
change as the development team and the product manager learn more 
about it. Adapt the software to cope with changes as they are made.
• Develop and deliver incrementally

Always develop software products in increments. Test and evaluate each 
increment as it is developed and feed back required changes to the 
development team.

Agile development principles

2
5



• Maintain simplicity
Focus on simplicity in both the software being developed and in the 
development process. Wherever possible, do what you can to 
eliminate complexity from the system.
• Focus on people, not things

Trust the development team and do not expect everyone to always do 
the development process in the same way. Team members should be 
left to develop their own ways of working without being limited by 
prescriptive software processes.

Agile development principles

2
6



Extreme Programming (XP)

27



• The most influential work that has changed software development 
culture was the development of Extreme Programming (XP). 
• The name was coined by Kent Beck in 1998 because the approach 

was developed by pushing recognized good practice, such as iterative 
development, to ‘extreme’ levels.
• Extreme programming focussess on 12 development techniques that 

are geared to rapid, incremental software development, change and 
delivery.
• Very much focused on improving quality-of-life for software developers.
• Less focused on project management and tracking concerns.

Extreme programming (XP)

28



Extreme programming practices

widely used

less popular

1.

2.
3.

4.

5.



• 1. Incremental planning/user stories 
There is no ‘grand plan’ for the system. What needs to be implemented (the 
requirements) in each increment are established by the team and customer. 
Requirements are written as user stories, and are priority is determined by the 
time available and their relative importance.  

• 2. Continuous integration 
As soon as the work on a task is complete, it is integrated into the whole system 
and a new version of the system is created. All unit tests from all developers are 
run automatically and must be successful before the new version of the system is 
accepted.

• 3. Test-driven development
Instead of writing code then tests for that code, developers write the tests first. 
This helps clarify what the code should do and ensures that there is always a 
‘tested’ version of the code available. An automated unit test framework is used 
to run the tests after every change. 

Widely adopted practices (that we will use)

30



• 4. Refactoring
Refactoring means improving the structure, readability, efficiency and 
security of a program. All developers are expected to refactor the code as 
soon as potential code improvements are found. This keeps the code 
simple and maintainable.
• 5. Small releases

The minimal useful set of functionality that provides value is developed 
first. Subsequent releases of the system incrementally add functionality.

Widely adopted practices (that we will use)

We will revisit 
most of these 

later.



Scrum

32



• Software company managers need to understand how much it costs 
to develop a software product, how long it will take and when the 
product can be brought to market.
• Plan-driven development provides this information through long-term 

development plans that identify deliverables - items the team will deliver and 
when these will be delivered.

• Plans always change so anything apart from short-term plans are unreliable.
• Scrum provides a framework for agile project organization and 

planning. 
• It is designed around short-term planning activities.
• The assumption is that requirements and plans will change during a project!
• It does not mandate any specific technical practices. 

Scrum

33



• Self-organizing teams
• Self-organizing teams make their own decisions and work by discussing issues and 

making decisions by consensus. No single person is “in charge”.
• Timeboxed iterations

• The team has a fixed period (usually 2-4 weeks) where they decide on goals, select 
items to work on, implement them and then demo them to a customer at the end.

• Customer feedback
• You engage the customer for informal feedback (when possible) and formal 

demonstrations of work completed during an iteration.
• Work from a backlog

• Work is normally only scheduled for the next sprint; you don’t try and plan the entire 
life of a product. Unscheduled work is tracked in a “backlog”.

Key Scrum concepts

34



Sprint activities

35

A sprint is 2-4 weeks in length.

• Spring planning: the team 
decides on goals and what to 
accomplish.

• Sprint execution: the team 
works on features, bugs, other 
assigned work.

• Sprint review: review the 
outcomes with a customer. The 
team also meets to review 
progress.



• Sprint planning 
• Work items to be completed in that sprint are selected and, if necessary, 

refined to create a sprint backlog. This should not last more than a day at the 
beginning of the sprint.

• Sprint execution
• The team work to implement the sprint backlog items that have been chosen 

for that sprint. If it is impossible to complete all of the sprint backlog items, 
the sprint is not extended. The unfinished items are returned to the product 
backlog and queued for a future sprint.

• Sprint reviewing
• The work done in the sprint is reviewed by the team and (possibly) external 

stakeholders. The team reflect on what went well and what went wrong 
during the sprint with a view to improving their work process.

Sprint activities

36



The top five benefits of using Scrum

37



Phase 1: Sprint planning

38



• In a sprint plan, the team decides which items in the product backlog 
should be implemented during that sprint.
• Key inputs are the effort estimates associated with PBIs and the team’s 

velocity (i.e. how much work they historically get done in a sprint).

• The output of the sprint planning process is a sprint backlog.
• The sprint backlog is a breakdown of PBIs to show the what is involved in 

implementing the PBIs chosen for that sprint.

• During a sprint, the team has daily meetings (scrums) to coordinate 
their work.
• Check-in with each other, identify problem areas to address.

Sprint planning

39



• Establish an agreed sprint goal
• Sprint goals may be focused on software functionality, support or 

performance and reliability,.

• Decide on the list of items from the product backlog that should be 
implemented
• Create a sprint backlog. 

• This is a more detailed version of the product backlog that records the work 
to be done during the sprint

Sprint planning

40



Sprint goals

41



You work on product backlog items (PBIs) during sprint planning, or as a scheduled 
activity.

• Creation: New items are added to the backlog. These may be new features 
suggested by the customer, feature changes, engineering improvements, or process

• Refinement: Existing PBIs are analyzed and refined to create more detailed PBIs. This 
may lead to the creation of new product backlog items.

• Estimation: The team estimates the amount of work required to implement a PBI 
and adds this assessment to each analyzed PBI. 

• Story points (arbitrary number denoting “effort”) or half-day estimates.

• Prioritization: The product backlog items may be reordered based on circumstances.

• Recommend adding a priority label (high, medium, low) to track priorities.

Planning Activities

42



Phase 2: Sprint execution

43



• Sprints are fixed-length periods (2 - 4 
weeks) in which software features 
are developed and delivered.
• During a sprint, the team has daily 

meetings (scrums) to review 
progress and to update the list of 
work items that are incomplete.
• Sprints should produce a ‘shippable 

product’ i.e. complete and ready to 
deploy at the end of the sprint.

Scrum execution

44



• Product backlog
• A list of items such as bugs, features that 

the team has not yet completed.

• Sprint backlog
• The list of items that the team has 

agreed to complete for the sprint.

• Scrum
• Daily team meeting to review progress.

• Shippable product increment
• The output which should be of high 

enough quality to be deployed.

Scrum practices

45



• Product owner
• A team member who is responsible for identifying product features and attributes. 

They review work done and help to test the product.
• In product development, the product manager should normally take on the Product 

Owner role.   
• ScrumMaster 

• A team coach who guides the team in the effective use of Scrum.
• In many companies that use Scrum, the ScrumMaster also has some project 

management responsibilities.
• Development team

• A small self-organising team of five to eight people who are responsible for 
developing the product.

Key roles in Scrum

46

Your team 
lead is the 

ScrumMaster. 



• A scrum is a short, daily meeting that is usually held at the beginning of the 
day. During a scrum, all team members share information, describe their 
progress since the previous day’s scrum, problems that have arisen and plans 
for the coming day. This means that everyone on the team knows what is 
going on and, if problems arise, can re-plan short-term work to cope with 
them.  

• Scrum meetings should be short and focused. To dissuade team members 
from getting involved in long discussions, they are sometimes organized as 
‘stand-up’ meetings where there are no chairs in the meeting room.

• During a scrum, the sprint backlog is reviewed. Completed items are removed 
from it. New items may be added to the backlog as new information emerges. 
The team then decide who should work on sprint backlog items that day.

Scrums

47



• Products are developed in a series of sprints, each of which delivers 
an increment of the product or supporting software. 
• The expectation is that you will require many, many sprints to 

complete your product.
• Sprints are short duration activities (1-4 weeks) and take place between a 

defined start and end date. 
• Sprints are timeboxed, which means that development stops at the end of a 

sprint whether or not the work has been completed.
• You often do not know how long unscheduled items will take to 

complete. (If you need to know this, you need to plan the time to do 
estimates of the work!)

How many sprints do you need?

48



Benefits of using timeboxed sprints

49



• Reviewed
The code has been reviewed by another team member who has checked that it meets agreed 
coding standards, is understandable, includes appropriate comments, and has been 
refactored if necessary.

• Unit tested
All unit tests have been run automatically, and all tests have executed successfully.

• Integrated
The code has been integrated with the project codebase and no integration errors have been 
reported.

• Integration tested
All integration tests have been run automatically, and all tests have executed successfully.

• Accepted
Acceptance tests have been run if appropriate and the product owner or the development 
team have confirmed that the product backlog item has been completed. 

Code completeness checklist

50



Phase 3: Sprint reviews

51



Demo to a customer

• Your sprint should always end with a demonstration to stakeholders 
(including the customer).
• Identify

• What your goals were for the sprint.
• Which of these goals were met (with a demonstration of functionality).
• Which goals were not met. If they weren’t met, how and when will you meet 

them?

• The goal is to get feedback!
• Further refinements may be required.

52



• At the end of each sprint, there is a review meeting, which involves 
the whole team. This meeting:
• reviews whether the sprint has met its goal. 
• sets out any new problems and issues that have emerged during the sprint.
• is a way for a team to reflect on how they can improve the way they work. 

• The sprint review should include a process review, in which the team 
reflects on its own way of working and how Scrum has been used.  
• The aim is to identify ways to improve and to discuss how to use Scrum more 

productively. 

Sprint reviews

53



•An effective way to develop software products is to use agile software 
engineering methods that are geared to rapid product development and 
delivery.

•Agile methods are based around iterative development and the minimization 
of overheads during the development process.

•Extreme programming (XP) is an influential agile method that introduced agile 
development practices such as user stories, test-first development and 
continuous integration into the mainstream.

•Scrum is an agile method that focuses on agile planning and management. 
Unlike XP, it does not define the engineering practices to be used. 

Summary 1

62



• In Scrum, work to be done is maintained in a product backlog – a list 
of work items to be completed. Each increment of the software 
implements some of the work items from the product backlog.
• Sprints are fixed-time activities (usually 2–4 weeks) where a product 

increment is developed. Increments should be ‘potentially shippable’ 
i.e. they should not need further work before they are delivered.
• A self-organizing team is a development team that organizes the work 

to be done by discussion and agreement amongst team members.
• Scrum practices such as the product backlog, sprints and self-

organizing teams can be used in any agile development process, even 
if other aspects of Scrum are not used.

Summary 2

63



Reference

• Beck & Andres. 2004. Extreme Programming Explained. Addison-Wesley 
Professional. ISBN 978-0134051994

• Schwaber & Sutherland. 2020. The Scrum Guide. CC-licensed.
• Sommerville. 2021. Engineering Software Products: An Introduction to Modern 

Software Engineering. Pearson. ISBN 978-1292376356.
• Shore & Warden. 2021. The Art of Agile Development, 2nd Edition. O’Reilly. ISBN 

978-1492080695.

64

https://www.amazon.ca/Extreme-Programming-Explained-Embrace-Change-ebook/dp/B00N1ZN6C0
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://www.amazon.ca/Engineering-Software-Products-Ian-Sommerville/dp/013521064X
https://www.amazon.ca/Engineering-Software-Products-Ian-Sommerville/dp/013521064X
https://www.amazon.com/Art-Agile-Development-James-Shore/dp/1492080691

