
Kotlin Part 3:
Functional Programming

CS 346: Application
Development

1

What is functional programming?

• Functional Programming (FP) is a declarative programming style
where programs are constructed by compositing functions together.
• As much as possible, computation is expressed as a series of functions

that return values.
• There are real benefits to this programming style:

• Robustness
• Expressivity
• Clarity

2

Don’t worry, we’re not bringing back Racket.

First-class functions means that functions are treated as
any other type. We can pass them as to another function
as a parameter, return functions from other functions,
and assign functions to variables.

Pure functions are functions that have no side effects.
More formally, the return values of a pure function are
identical for identical arguments (i.e. they don't depend
on any external state for their return value).

Immutable data means that we do not modify data in-
place. We prefer immutable data that cannot be
accidentally changed, especially as a side-effect.

Lazy evaluation is the notion that we only evaluate as
expression when we need to operate on it. This allows us
to express and manipulate complex expressions.

The Functional Programming Paradigm.
https://towardsdatascience.com

3

https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://en.wikipedia.org/wiki/Immutable_object
https://en.wikipedia.org/wiki/Lazy_evaluation
https://towardsdatascience.com/

Functional Kotlin
Kotlin is a hybrid language that supports OO, FP and Imperative
programming styles.
How can we write Kotlin-style functional code? Simplest way.
• Avoid unintended mutation and side effects

• Use val instead of var
• Avoid globals for carrying program state, as much as possible
• Favor pure functions that are free of side-effects i.e. avoid inline

modification.
• First-class functions & higher-order functions

• Explicitly functional expressions and constructs.
• We’ll spent most of this lecture on this topic!

4

Function Types

• Functions in Kotlin are "first-class citizens" of the language.
• Functions are types in Kotlin, and we can use them anywhere

we would expect to use a regular type.
• This means that we can define functions, assign them to

variables, pass functions as arguments to other functions, or
return functions.
• Let’s walk through some examples (with credit to Dave Leeds

on Kotlin).

5

https://typealias.com/
https://typealias.com/

Example: Barber shop
Bert's Barber shop is creating a program to calculate the cost of a haircut, and they end
up with 2 almost-identical functions.
fun calculateTotalWithFiveDollarDiscount(initialPrice: Double): Double {
 val priceAfterDiscount = initialPrice - 5.0
 val total = priceAfterDiscount * taxMultiplier
 return total

}

fun calculateTotalWithTenPercentDiscount(initialPrice: Double): Double {
 val priceAfterDiscount = initialPrice * 0.9
 val total = priceAfterDiscount * taxMultiplier
 return total

}

6

Identical
except for
this code.

If we could somehow pass in that line of code as an argument, then we
could replace both with a single function that looks like this, where
applyDiscount() represents the code that we would dynamically
replace:

// applyDiscount = initialPrice * 0.9, or
// applyDiscount = initialPrice - 5.0

fun calculateTotal(initialPrice: Double, applyDiscount: ???): Double {
 val priceAfterDiscount = applyDiscount(initialPrice)
 val total = priceAfterDiscount * taxMultiplier
 return total

}

Function type?

7

Assign function to a variable

Here’s how we assign one of our functions to a variable.

fun discountFiveDollars(price: Double): Double = price - 5.0
val applyDiscount = ::discountFiveDollars

applyDiscount is now a reference to the discountFiveDollars function (note
the :: notation when we have a function on the RHS of an assignment).
We can even invoke it.
val discountedPrice = applyDiscount(20.0) // Result is 15.0

8

The Type of a function

So what is the type of this function?

// this is the original function signature, for reference
fun discountFiveDollars(price: Double): Double = price - 5.0
val applyDiscount = ::discountFiveDollars

// we use this format when specifying the type
val applyDiscount: (Double) -> Double

// we could use this format for other functions too
val discountFiveDollars: (Double) -> Double

9

Pass a function to a function

fun discountFiveDollars(price: Double): Double = price - 5.0 // function signatures match
fun discountTenPercent(price: Double): Double = price * 0.9
fun noDiscount(price: Double): Double = price

fun calculateTotal(initialPrice: Double, applyDiscount: (Double) -> Double): Double {
 val priceAfterDiscount = applyDiscount(initialPrice)
 val total = priceAfterDiscount * taxMultiplier
 return total
}

val withFiveDollarsOff = calculateTotal(20.0, ::discountFiveDollars) // $16.35
val withTenPercentOff = calculateTotal(20.0, ::discountTenPercent) // $19.62
val fullPrice = calculateTotal(20.0, ::noDiscount) // $21.80

10

Return a function from a function
Instead of typing in the name of the function each time he calls
calculateTotal(), Bert would like to just enter the coupon code from the
bottom of the coupon that he receives from the customer.
To do this, he creates a function that accepts the coupon code and returns
the correct discount function.

// accepts a String argument, and return a function
fun discountForCouponCode(couponCode: String): (Double) -> Double =
when (couponCode) {
 "FIVE_BUCKS" -> ::discountFiveDollars
 "TAKE_10" -> ::discountTenPercent
 else -> ::noDiscount
}

11

Function Literals (Lambdas)

We can use this same notation to express the idea of a function literal,
or a function as a value.
val applyDiscount: (Double) -> Double = { price: Double -> price - 5.0 }
val applyDiscount = { price: Double -> price - 5.0 } // type inferred

The code on the RHS of this expression is a function literal, which
captures the body of this function. We also call this a lambda. A
lambda is just an anonymous function, written in this form:

• the function is enclosed in curly braces { }
• the parameters are listed, followed by an arrow
• the body comes after the arrow

12

{ price: Double -> price – 5.0 }

A lambda expression

The implicit ‘it’
In cases where there’s only a single parameter for a lambda, you can omit the
parameter name and the arrow. When you do this, Kotlin will automatically make
the name of the parameter it.
• Original forms:
• val applyDiscount: (Double) -> Double = { price: Double -> price - 5.0 }
• val applyDiscount = { price: Double -> price - 5.0 } // type inferred

• Shortened forms:
• val applyDiscount: (Double) -> Double = { it - 5.0 }

13

Lambdas as Arguments
We can rewrite our earlier example to use lambdas instead of function references:

fun calculateTotal(initialPrice: Double, applyDiscount: (Double) -> Double): Double {
 val priceAfterDiscount = applyDiscount(initialPrice)
 val total = priceAfterDiscount * taxMultiplier
 return total
}
val withFiveDollarsOff = calculateTotal(20.0, { it - 5.0 }) // $16.35
val withTenPercentOff = calculateTotal(20.0, { it * 0.9 }) // $19.62
val fullPrice = calculateTotal(20.0, { it }) // $21.80

14

Trailing lambda
In cases where function’s last parameter is a function type, you can move the
lambda argument outside of the parentheses to the right, like this:

val withFiveDollarsOff = calculateTotal(20.0) { it - 5.0 } // $16.35
val withTenPercentOff = calculateTotal(20.0) { it * 0.9 } // $19.62
val fullPrice = calculateTotal(20.0) { it } // $21.80

This is meant to be read as two arguments: one parameter inside the
brackets, and the lambda as the second parameter, outside the brackets.
This syntax, where the lambda function is placed outside of the brackets, is
called a trailing lambda.

15

https://kotlinlang.org/docs/lambdas.html

Returning lambdas

We can easily modify our earlier function to return a lambda as well.

fun discountForCouponCode(couponCode: String): (Double) -> Double =
when (couponCode) {
 "FIVE_BUCKS" -> { price -> price - 5.0 }
 "TAKE_10" -> { price -> price * 0.9 }
 else -> { price -> price }

}

16

Lambdas & Collections
Collection classes (e.g. List, Set, Map, Array) have built-in pure
functions for working with their data.
filter produces a new list of those elements that return true from a
predicate function.
val list = (1..100).toList()
val filtered = list.filter { it % 5 == 0 } // 5 10 15 20 ... 100

map produces a new list that is the results of applying a function to
every element.
val list = (1..100).toList()
val doubled = list.map { it * 2 } // 2 4 6 8 ... 200

reduce accumulates values starting with the first element and applying
an operation to each element from left to right.
val strings = listOf("a", "b", "c", "d")
val str = strings.reduce { acc, string -> acc + string }) // abcd 17

forEach calls a function for every element in the collection.
val fruits = listOf("advocado", "banana", "cantaloupe")
fruits.forEach { print("$it ") } // advocado banana cantaloupe

take returns a collection containing just the first n elements. drop returns a
new collection with the first n elements removed.
val list = (1..50)
val first10 = list.take(10) // 1 2 3 ... 10
val last40 = list.drop(10) // 11 12 13 ... 50

first and last return those respective elements. slice allows us to extract a
range of elements into a new collection.
val list = (1..50)
val even = list.filter { it % 2 == 0 } // 2 4 6 8 10 ... 50
even.first() // 2
even.last() // 50
even.slice(1..3) // 4 6 8

18

