
Kotlin Part 4: 
Idiomatic Kotlin

CS 346 Application 
Development

1



Credits

• This section summarizes a talk by Urs Peters @Kotlin Dev Day 2022: 
Idiomatic Kotlin: the key to unlocking Kotlin’s true potential.

2

https://www.youtube.com/watch?v=zYH6zTtl-nc


Why Idiomatic Kotlin?

It’s possible to use Kotlin as a “better Java”, but you would be missing 
out on some of the features that make Kotlin unique and interesting.
• It has a number of unique language features that are worth learning!
• These can lead you to more efficient and effective use of the language 

and its libraries.

We’ll discuss Kotlin design principles along the way.

3



1. Favour immutability over mutability 

Kotlin favors immutability with various immutable constructs and defaults.
What is so good about immutability?
• Immutability: exactly one state that will never change.
• Mutable: an infinite amount of potential states.

4



5

How to leverage it?
• prefer vals over vars
• prefer read-only collections (listOf instead of mutableListOf)
• use immutable value objects instead of mutable ones (e.g. data classes over classes)

Local mutability that does not leak outside is ok (e.g. a var within a function is ok if nothing 
external to the function relies on it).



2. Use nullability appropriately

Think twice before using !!

Stick to nullable types only

6



7

Use nullability where applicable but don’t overuse it.

Avoid using nullable types in Collections



3. Get The Most Out Of Classes and Objects

Use immutable data classes for value classes, config classes etc.
You’ll be surprised how many classes you create that are just data classes.

8



9

Use normal classes instead of data classes for services etc.



Use value classes for domain specific types instead of common types.

10

Value denotes an inline value-based class. They have restrictions compared to 
regular classes, but are inline and type-erased. Useful for high performing code.



Seal classes for exhaustive branch checks.

11

Sealed means “no 
more classes can 
implement this 
interface than exist in 
this file. This is why 
there is no ‘else’ 
clause required.



4. Use Available Extensions

12



5. Use control-flow appropriately

Use if/else for single branch conditions rather than when

13



Use `when` for multi-branch conditions.

14



6. Expression Oriented Programming

Imperative Programming
• Imperative programming relies on declaring variables that are 

mutated along the way.
• i.e. var, loops, mutable collections, mutating data, side effects.

15



Expression Oriented Programming
• Expression oriented programming relies on thinking in functions 

where every input results in an output.
• i.e., val, functions, read-only collections, input/output, transforming data

16

This is better because it results in more concise, deterministic, more 
easily testable and clearly scoped code that is easy to reason about 
compared to the imperative style.



if/else is an expression returning a result.

17



when is an expression too, returning a result.

18



try/catch also.

19



Most functional collections return a result, so the return keyword is rarely needed!

20



7. Functional Collections Over For-Loops

Program on a higher abstraction level with (chained) higher-order 
functions from the collection.

21



For readability, write multiple chained functions from top-down instead 
of left-right.

22



Use intermediate variables when chaining more than ~3-5 operators.

23



8. Scope Your Code

Use apply/with to configure a mutable object.

24



Use let/run to manipulate the context object and return a different 
type.

25



Use also to execute a side-effect.

26



Reference

• Leeds. 2025. Dave Leeds on Kotlin. Online.
• Leeds. 2025. Kotlin: An Illustrated Guide. TypeAlias Studios LLC. 

ISBN 979-8992796605.
• JetBrains. 2025. Kotlin Documentation. Online.
• Elizarov, et al. 2024. Kotlin in Action. 2nd edition. Manning 

Publications. ISBN 9781617299605.
• Vermeulen et al. 2021. Functional Programming with Kotlin. 

Manning. ISBN 978-1617297168.

28

https://typealias.com/start/
https://kotlinlang.org/docs/home.html

