
Architecture
CS 346: Application

Development

1

Building software “correctly”

“It doesn’t take a huge amount of knowledge and skill to get a program
working. Kids in high school do it all the time… The code they produce
may not be pretty; but it works. It works because getting something to
work once just isn’t that hard.

Getting software right is hard. When software is done right, it requires
a fraction of the human resources to create and maintain. Changes are
simple and rapid. Defects are few and far between. Effort is minimized,
and functionality and flexibility are maximized.”

– Robert C. Martin, Clean Architecture (2016).

2

Software qualities
Software will often have specialized requirements e.g., startup time may be
important for a web service, but less important for a desktop app.

Here are characteristics that we should consider for any software we design:
• Usability: Software is “fit for purpose” and meets requirements.
• Extensibility: We can extend functionality or add new functionality.
• Scalability: Software can grow to increased demand e.g., more users.
• Performant: Software should be “fast enough” for its purpose.
• Robustness: Software should be stable and reliable.
• Reusability: We should reuse design/code whenever possible.

3

> Usability

When designing systems, we need to explicitly identify the problem we
are solving, detailed requirements that must be met. Usability refers to
how well our solution meets product requirements.
• Functional requirements refer to the functionality of your

application. e.g., “I want to be able to display a report in this format”.
• Non-functional requirements refer to the qualities of our software.

e.g., power-consumption, startup-time, records processed/second.
• To address these, it’s important to understand and quantify requirements, so

that we can measure them to know if they have been achieved.

• Much of our project management overhead is tracking requirements!

4

> Extensibility/Flexibility

Extensibility or flexibility implies the ability to expand our features,
without compromising the existing features. It’s the opposite of “brittle
code”.
The challenge in building flexible systems is that it’s easy to “over-
engineer” a generalizable solution, for something that will never be
needed (or conversely, made a system so rigid that it’s impractical to
adapt it later).
Examples:
• add a new image format to an image editor (PNG).
• add a new payment method (Visa) to a payment system.
• add a new input modality (support both kb + voice dictation).

5

> Robustness

Software rarely works in a vacuum.
• Your operating environment may change (OS, libraries may be updated).
• You are probably getting inputs from many sources (messages, data files,

user input). Sometimes they are in a format you don’t expect.
• These things can result in expected behavior.
Robustness means that your software needs to continue to work correctly,
even when faced with unintended inputs, or changes to the operating
environment.
• It cannot crash. Ever. Manage errors and attempt to resume. Log details.
• Performance and other characteristics should remain constant over time.
• Data should never, ever get lost.

6

> Reusability 1/2

7

Software is expensive and time-consuming to produce, so anything that reduces cost
is welcome. Code reusability helps to reduce cost and time to delivery.
• It’s usually faster to repurpose something you’ve already written than produce it.

Reusability reduces risk, since you are reusing tested code, instead of writing new,
potentially defective code.
• New code is always risky until proper testing is complete (which takes time and cost to do).
• You should always reuse existing, tested code when possible.

Reusability is also normally an implicit requirement i.e., something that you are
assumed to do as a best-practice; often not an explicit project goal.

What is architecture?

These concerns are in the domain of software architecture:

Architecture is the holistic understanding of how your software is
structured, and the effect that structure has on its characteristics
and qualities. Architecture as a discipline suggests that structuring
software should be a deliberate action.

Software structure has a significant impact on our ability to deliver
these qualities, as well as on the qualities themselves.

8

Architecture determines qualities

Decisions like “how to divide a system into components” have a huge impact
on the characteristics of the software that you produce.
• Some architectural decisions are necessary for your software to work

properly, or at-all.
• e.g., handling remote data efficiently requires specific design choices.
• e.g., scaling to larger amounts of data also requires specific design considerations.

• The structure of your software will determine how well it runs, how quickly
it performs essential operations, how well it handles errors.

Poorly design software is frustrating to work with, difficult to evolve and
change. It also takes longer and is more costly to build and maintain.

9

Architectural principles
What does architecture ”look like”? How can it help?

10

How do we meet our goals?
• We apply architectural

principles that improve our
ability to maintain and extend
our software.

We’ll focus on these:
• Loose coupling & high cohesion
• Modularity
• Separation of concerns
• Information hiding

11- Oliver Vogel et al. 2011. Software Architecture. Springer.

Architecture principles

Coupling & cohesion
Loose Coupling: reduce coupling between components as
much as possible; functionality should be isolated.
High Cohesion: class/module should be self-contained.
These work together:
• Modules are easier to understand if is self-contained.
• Modules are easier to modify if changes are contained.
Examples of coupling:
• High: classes access each other’s data directly. (BAD)
• Medium: classes share a global data structure. (BETTER)
• Low: classes communicate through public methods. (BEST)

12

Aim for low coupling

Single Responsibility Principle
• Classes (or similar code structures) should have a

single principle in their design.
• We will use modularity to reduce

interdependencies as much as possible.

Avoid global data structures
• If you have them, then you tend to use them from

multiple places – leading to coupling.

13

Modularity
Modularity refers to the logical grouping of source code into related
groups e.g., namespaces (C++), or packages (Kotlin). Modularity
enforces a separation of concerns and encourages reuse of source code.
Kotlin can support modularity in multiple ways, representing different
levels of abstraction.
• Modules: we use modules for top-level components or deliverables.

• Restrict module use to platform targets, or shared libraries/components.

• Packages: groups of logically related functionality.
• Packages can contain related classes, functions. e.g., views, models.
• This is your main mechanism for modularity.

14

Use modules and packages
You create a hierarchy of packages
(folders) for your code.
How you group your code is called
partitioning:
• Technical partitioning: group

according to technical
capabilities. e.g., all models for all
features are grouped, all views are
together and so on.
• Domain partitioning: group according

to the area of interest. e.g., each
folder represents a feature, which may
have its own view, view-model and
model.

15

└── src
 ├── main
 ├── kotlin
 │ └── shared
 │ ├── common
 │ ├── database
 │ ├── domain
 │ ├── model
 │ ├── service
 │ └── settings
 └── resources
 └── local.properties

A partial source tree.

The `shared’ module has multiple
packages, reflecting different application
areas e.g., domain, model, service. This is
an example of technical partitioning.

Adopt a suitable architectural style
An architectural style (aka pattern) is an overall structure that
describes how our components are organized and structured, and
how they communicate.
• Each style describes an example of modularity + class relations.
• Like design patterns, an architectural style is a general solution that

has been found to work well at solving specific types of problems.
• An architectural style has a unique topology (organization of

components) and characteristics (qualities) for that topology.

16

Antipattern: “Big Ball of Mud”
A Big Ball of Mud is a haphazardly structured,
sprawling, sloppy, duct-tape-and-baling-wire,
spaghetti-code jungle.
These systems show unmistakable signs of
unregulated growth, and repeated, expedient
repair.

-- Foote & Yoder 1997.

17

A Big Ball of Mud isn’t intentional—it’s the result of a system
being tightly coupled, where any module can reference any other
module. A system like this is extremely difficult to extend or modify.

Console: Pipeline Architecture
A pipeline architecture transforms data in a sequential manner. e.g., streams.
Usually one outbound starting point (source) and one or more inbound
termination points (sinks).
• Pipes are unidirectional, accepting input, and producing output.
• Filters are entities that perform operation on data that they are fed. Each

filter performs a single operation, and they are stateless.

18

• Easy to extend by adding nodes.
• Filters are stateless, and testable.
• Broadly applicable.

Can we produce something like this for GUI
applications?

GUI: Which architecture?
GUI applications are designed to processing iterative commands from
the user and display the results. Designed around an interaction loop:
• accept input for text (keyboard), positional input (mouse, touch)
• produce output in response to changes in state.

19

20

MVC originated with Smalltalk (1988).
• Input is accepted and interpreted by the Controller, and
• Data is routed to the Model, where it changes the program state (in some meaningful way).
• Changes are published to the View(s) so that they can be reflected to the user in the View.

Attempt 1: Model-View Controller

21

Components
• View: displays data (or a portion of it)
• Controller: handles input from the user.
• Model: stores the data.

There are often multiple views.

MVC uses the Observer pattern to notify
Subscribers. Any Subscriber (i.e. any class that
implements the interface) can accept notification
messages from the Publisher.

This is “standard” MVC. There are many variations!

MVC Implementation

https://en.wikipedia.org/wiki/Observer_pattern

Problems with MVC?

However, there are a few challenges with standard MVC.
• Graphical user interfaces bundle the input and output together into

graphical “widgets” on-screen (see user interfaces lecture).
• This makes input and output behaviours difficult to separate
• In-practice, the controller class is rarely implemented.

• Modern applications tend to have multiple screens.
• Need something like a coordinator class to control visibility of screens.
• Each screen may have its own data needs which cannot be handled by a

single model.
• This architecture is completely standalone.

• How do you handle services? Databases?

22

Attempt 2: Layered Architecture
Let’s generalize the MCV approach.
• Remove the controller.
• Add a Domain layer for UI specific data.
• Add Services e.g., DB, web API.

How does it work now?
• Input is accepted by the View aka UI layer.
• The Domain layer does any screen-specific

logic, and forwards requests to the Model.
• The Model interacts with the Service (which

could be a DB or web API) as needed.
• The Service returns data to the Model,

which then returns data up the chain.

23

Layers remain isolated (“separation of concerns”)
High testability: components in specific layers.
High ease of development.

Attempt 2: Layered Architecture

A layered or n-tier architecture organizes software
into horizontal layers, where each layer represents
a logical division of functionality.
• Each layer has specific functionality that is

presents to the layer above (i.e. lower layers
provide services to layers above).

• Requests flow down, and data flows up.
• This also means that dependencies extend down.

There is a clear separation of concerns.
• Each layer is independent, and testable.
• Use dependency injection to decouple layers.

24

Remember: these are layers, and each may
require multiple classes to implement them.

MVVM
Implementation time!

25

Model View View-Model (MVVM)

Model-View-ViewModel was invented by Ken Cooper and Ted Peters in 2005. It was
intended to simplify event-driven programming and user interfaces in C#/.NET.

MVVM adds a ViewModel that sits between the View and Model.

Why? Localized data.
• We often want to pull “raw” data from the Model and modify it before displaying

it in a View e.g., currency stored in USD but displayed in a different format.
• We sometimes want to make local changes to data, but not push them

automatically to the Model e.g., undo-redo where you don’t persist the changes
until the user clicks a Save button.

26

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Event-driven_programming

27

• Model: As with MVC, the Model is the Domain object, holding application state.
• View: The presentation of data to an output device. Handles both input and output.
• View-Model: A component that stores data that is relevant to the View to which it is

associated. This may be a subset of Model data but is more often a reinterpretation of that
data in a way that makes sense to the View.

Refinement from our layered architecture:
UI layer consists of View + VM
• Each View has one VM.
• Requests flow from VM to Domain

classes.
Same flow as earlier
• Requests down, data up.
• Notification used with VM, which in turn

propagates data into Views.

28

Layered architecture

29

MVVM Implementation

• View: displays data (or a portion of it)
• ViewModel: localized data for the view.
• Model: stores the main data.

There are often multiple views. They may each
display different data, or views may display the
same data. Each View typically has one
ViewModel associated with it.

MVVM also uses the Observer pattern to notify
Subscribers, but unlike MVC, the subscriber is
typically a ViewModel. The View and ViewModel
are often tightly coupled so that updating the
ViewModel data will refresh the View.

https://en.wikipedia.org/wiki/Observer_pattern

30

31

Dependency rule

Dependencies flowing “down” means that
each layer can only communicate directly with
the layer below it.
In this example, the UI layer can manipulate
domain objects, which in turn can update their
own state from the Model.

e.g. a Customer Screen might rely on a
Customer object, which would be populated
from the Model data (which in turn could be
fetched from a remote database).

32

Update rule

Notifications flowing up means that
data changes must originate from the
“lowest” layers.

e.g., a Customer record might be
updated in the database, which triggers
a change in the Model layer. The Model
in turn notifies any Subscribers (via the
Publisher interface), which results in
the UI updating itself.

In other words, updates flow “up”.

Use interfaces

We use interfaces instead of inheritance,
when possible, to encourage loose coupling.
• This provides flexibility in what classes can

participate in notifications and other
updates.
• e.g., a view could be a screen, or a

printer, or a text-to-speech device.
• e.g., an input device could be a

mouse, or pen, or touchpad.
• e.g., our service could be a database

or a web api.
• We also use dependency injection: class

instances are never created as part of one
class’s constructor; we create them
externally and pass them in at the call site.

33

https://en.wikipedia.org/wiki/Loose_coupling
https://en.wikipedia.org/wiki/Dependency_injection

Benefits

Layering our architecture really helps to address our earlier goals (reducing coupling,
setting the right level of abstraction). Additionally, it provides these other benefits:
• Independence from frameworks. The architecture does not depend on a particular set

of libraries for its functionality. This allows you to use such frameworks as tools, rather
than forcing you to cram your system into their limited constraints.

• It becomes more testable. Layers can be tested independently of one another. e.g., the
business rules can be tested without the UI, database, web server.

• Independence from the UI. The UI can be changed without changing the rest of the
system. A web UI could be replaced with a console UI, for example, without changing the
business rules.

• Independence from the data sources. You can swap out Oracle or SQL Server for Mongo,
BigTable, CouchDB, or something else. Your business rules are not bound to the database
or to the source of your data.

34

Reference

John Ousterhout. 2018. A Philosophy of Software Design. Yaknyam
Press. ISBN 978-1732102200.
Martin Fowler. 2002. Patterns of Enterprise Application
Architecture. Addison-Wesley. ISBN 978-0321127426.
Robert C. Martin. 2017. Clean Architecture. Prentice Hall. ISBN 978-
0134494166.
Shvets. 2021. Refactoring Guru: Design Patterns

35

https://refactoring.guru/design-patterns

