
Build Systems 
& Gradle

CS 346 Application 
Development

1



Deploying Applications

As a developer, your final goal is a deployable application that 
can be installed and executed by your users.
To achieve this, you will need to perform several steps:

• Check library versions, resources.
• Compile your application.
• Run tests, ensure everything works.
• Build installers for your users.

You don’t want to do this manually!
• These steps are all very complex.
• Any of them can introduce errors.

2



Build Systems

A build system is a system that manages the tasks required to build 
software, including compilation, linking, automated testing, packaging.

• e.g., Maven for Java; Cargo for Rust; Cmake/Scons/Bazel for C++.

Characteristics of a useful build system:
• It provides consistency in builds so that you get consistent results. 
• It is expressive so that you can define any custom tasks 

• e.g., generate a ZIP file, or convert some documentation to include in the installation.
• You can automate many of the steps to avoid user errors.
• It integrates with other systems so that you can delegate responsibility 

• e.g., remote test under a different OS.

3



Why Gradle?
Gradle is a modern build system for Java/Kotlin.

• It's popular in the Kotlin and Java ecosystems.
• It’s the official build tool for Android projects.
• It's cross-platform and programming language agnostic.
• It's open source and has a large community of users.

Three main areas of functionality:
1. Managing build tasks: Built-in support for discrete tasks that you will need to 

perform. e.g., downloading libraries; compiling code; running unit tests and so on.
2. Build configuration: Define and manage how these tasks are executed.
3. Dependency management: Manage external libraries and dependencies.

4



The pillars of a build system: managing code and dependencies, tasks that define actions to 
take, and configuration scripts that determine how to run these tasks.

5



Getting Started
Gradle project structure

6



Creating a project in IntelliJ IDEA. Choose Kotlin as your Language, 
Gradle for your Build system, and Kotlin for your Gradle DSL.

7



Basic Project Structure

build.gradle.kts is the main config file.
empty.iml is the IntelliJ config file.
gradle: contains gradle wrapper config.
gradlew & gradlew.bat are scripts.
settings.gradle.kts is a top-level 
project config file.
src: contains source code

• src/main/kotlin code module
• src/test/kotlin unit test module

8

.
├── build.gradle.kts
├── empty.iml
├── gradle
│  └── wrapper
│      ├── gradle-wrapper.jar
│      └── gradle-wrapper.properties
├── gradle.properties
├── gradlew
├── gradlew.bat
├── settings.gradle.kts
└── src
    ├── main
    │  ├── kotlin
    │  │  └── Main.kt
    │  └── resources
    └── test
        ├── kotlin
        └── resources

source code



Build Tasks
How to execute Gradle tasks.

9



What are build tasks?

Projects often have complex build requirements that include a series of steps that need to be 
performed. For example, you might need to:

1. Import dependencies e.g., libraries,
2. Compile your source code,
3. Run tests to make sure it works properly,
4. Build a distributable package.
5. Deploy to a server.

Any build system needs to support a wide range of steps like this, and it should allow you to define 
how they will be performed. 
Gradle calls these actions `build tasks`. Your application probably has many these that need to be 
run, in the correct order. 

10

Tasks represent 
“What you can 
do with your 

project”



Running Tasks
• From the command-line, run 

`gradlew` (or `gradlew.bat` 
with a task name. 

• e.g.,
$ ./gradlew clean
$ ./gradlew build
$ ./gradlew run

• The tasks that are available are 
specific to the type of project 
you are working with.

11

$ ./gradlew tasks

> Task :tasks

------------------------------------------------------------
Tasks runnable from root project 'gradle'
------------------------------------------------------------

Application tasks
-----------------
run - Runs this project as a JVM application

Build tasks
-----------
assemble - Assembles the outputs of this project.
build - Assembles and tests this project.
buildDependents - Assembles and tests this project and all dependent projects.
buildNeeded - Assembles and tests this project and all projects it depends on.
classes - Assembles main classes.
clean - Deletes the build directory.
jar - Assembles a jar archive containing the classes of the 'main' feature.
testClasses - Assembles test classes.



Gradle Wrapper
At the top-level of your project's directory structure are two scripts:
• gradlew for Unix users, and
• gradlew.bat for Windows users

These are Gradle wrapper scripts. You can use them to run Gradle tasks 
without having to install Gradle on your machine.
• Pass them command-line arguments.
• The scripts will download Gradle for you, install it, and then run the 

commands using that version of Gradle.

$ ./gradlew build 

Is this a good idea? Why not just install Gradle manually?
12



Gradle Wrapper Config
• The Gradle project configuration (gradle/gradle-wrapper.properties) lists 

the version of Gradle to be used for your project. It’s a text file, with 
contents (something like) this:

distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-8.0.2-bin.zip
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists

• To specify the version of Gradle being used in your project, change 
the distributionURL line to the correct version e.g., Gradle 8.0.2.

13



IntelliJ Support
• IntelliJ IDEA supports Gradle. 
• Gradle tool window shows all 

tasks grouped by type.
• Common tasks include:

• gradlew help
• gradlew tasks
• gradlew clean
• gradlew build
• gradlew run

14

View > Tool Windows > Gradle will open the 
Gradle window, listing the supported tasks 
for your project.



Plugins
• Gradle comes with a small number of predefined tasks. You can add 

additional tasks to your project as plugins.
• A plugin is a collection of related tasks that have been bundled e.g., 

java plugin adds tasks for compiling Java code.

• Core plugins: Included with Gradle by default, and they provide 
functionality for many projects. e.g., 
• `java` plugin - adds language support, and 
• `application` plugin  - adds support for running a console app.

• Community Plugins: These are plugins that are created by the 
community and are not included by default.

You specify plugins in your build.gradle.kts file.
15



16

plugins {
   application
    kotlin("jvm") version "2.0.10"
}

application {
    mainClass = "ca.uwaterloo.cs346.MainKt"
}

group = "ca.uwaterloo.cs346"
version = "1.0.0"

build.gradle.kts

Application plugin adds the run task.

Configuration details for that plugin
i.e., package.name of the class that 
contains the main method; what we 
run when the run task executes.

Used for 
packaging (later)



Build Configuration
How to manage your build configuration.

17



Config files
build.gradle.kts - module specific
• It is possible to have multiple 

modules (e.g., app/, service/). Each 
of these would have its own 
build.gradle.kts file specific to 
that type of module.
• This example has a single module, 

at the root.
settings.gradle.kts - project level.
• It contains settings that apply to all 

modules.

18

.
├── build.gradle.kts
├── empty.iml
├── gradle
│  └── wrapper
│      ├── gradle-wrapper.jar
│      └── gradle-wrapper.properties
├── gradle.properties
├── gradlew
├── gradlew.bat
├── settings.gradle.kts
└── src
    ├── main
    │  ├── kotlin
    │  │  └── Main.kt
    │  └── resources
    └── test
        ├── kotlin
        └── resources



settings.gradle.kts

This is the top-level configuration file. You don't need to modify 
this for single-target projects.

19

// list any plugins that you want to use across all modules
plugins {
    id("org.gradle.toolchains.foojay-resolver-convention") version "0.5.0"
}

// top-level descriptive name
rootProject.name = "project-name"

settings.gradle.kts



build.gradle.kts

This is the detailed build 
configuration. You might need to 
modify this file to:

• Add a new dependency (i.e. library)
• Add a new plugin (i.e. custom tasks)
• Update the version number of a 

product release.
• Don’t expect to create the 

perfect config file right-away.
• Start with the one generated by 

IntelliJ IDEA.
• Modify as you add dependencies or 

make changes.

20

// needed for desktop
plugins {
    kotlin("jvm") version ”2.0.10"
}

// product release info
group = "org.example"
version = "1.0.0"

// location to find libraries
repositories {
    mavenCentral()
}

// add libraries here
dependencies {
    testImplementation(`org.jetbrains.kotlin:kotlin-test`)
}

tasks.test {
    useJUnitPlatform()
}

// java version
kotlin {
    jvmToolchain(21)
}

build.gradle.kts



Dependencies
How to manage project dependencies.

21



What are dependencies?
In this context, dependencies are external libraries to provide functionality 
e.g., networking, user interfaces. 
• They need to be downloaded and added to your project to be useful.
• A large challenge of any build system is managing these dependencies. i.e.,

• Making sure that you have the correct version of a library, 
• Including dependencies that library might need (called transitive dependencies). 
• Making sure that the library is compatible with the rest of your software, and that it 

doesn't introduce any security vulnerabilities.

• In Gradle, you specify your dependencies in your build scripts. 
• Gradle will download them from an online repository as part of your build process.

22



Where do we find these dependencies?
A repository is a location where libraries are stored and made available; 
these can be private (e.g. hosted in your company) or public (e.g. hosted and 
made available to everyone).
• Typically, a repository will offer a large collection of libraries across many 

years of releases, so that a package manager is able to request a specific 
version of a library and all its dependencies.

• The most popular Java/Kotlin repository is mavenCentral, and we'll use it 
with Gradle to import any external dependencies that we might require.

See the course notes for details:
Reference > Programming > Libraries & Plugins

23

http://maven.org/
https://student.cs.uwaterloo.ca/~cs346/1259/reference/programming/libraries/


Finding dependencies
• You can search Maven Central or use a package manager like this klibs.io.
• Each package will include details of how to import and use it.

24

https://klibs.io/


Adding Dependencies
You add a specific module or dependency by adding it into the dependencies 
section of the build.gradle.kts file. Dependencies need to be specified 
using this syntax: 

group-name: module-name: version-number

We can often copy and paste the dependency line from the package 
information page directly into our build.gradle.kts

dependencies {
    implementation("io.coil-kt.coil3:coil-compose:3.1.0")
}

25

group-name module-name version



Version Catalogs
• One challenge to using a lot of dependencies is keeping track of the 

versions of libraries that you are using. 
• Gradle has a feature called version catalogs, which is a centralized 

file that contains a list of libraries and their versions. 
• Gradle will automatically keep versions up-to-date using this file.
• In Gradle 7.x or later, the version catalog is contained in a 

file libs.versions.toml in your gradle/ project directory.

• You use the dependencies defined in the version catalog in your build 
config files.

26

https://docs.gradle.org/current/userguide/version_catalogs.html

https://docs.gradle.org/current/userguide/version_catalogs.html
https://docs.gradle.org/current/userguide/version_catalogs.html
https://docs.gradle.org/current/userguide/version_catalogs.html
https://docs.gradle.org/current/userguide/version_catalogs.html
https://docs.gradle.org/current/userguide/version_catalogs.html
https://docs.gradle.org/current/userguide/version_catalogs.html


[versions]
guava = "32.1.3-jre"
junit-jupiter = "5.10.1"

[libraries]
guava = { module = "com.google.guava:guava", version.ref = "guava" }
junit-jupiter = { module = "org.junit.jupiter:junit-jupiter", 
version.ref = "junit-jupiter" }

gradle/libs.versions.toml

dependencies {
    // This dependency is used by the application.
    implementation(libs.guava)
}

build.gradle.kts

27



Types of Gradle projects
Getting started with a new project.

28



Single Project Structure
The top-level module is defined in the root of the project.

29

├── build.gradle.kts
├── src
│  ├── main
│  │  ├── kotlin
│  │  └── resources
│  └── test
│    ├── kotlin
│    └── resources
├── gradle
│  └── wrapper
│    ├── gradle-wrapper.jar
│    └── gradle-wrapper.properties
├── gradlew
├── gradlew.bat
└── settings.gradle.kts

Configuration files are at the top-level.
Source tree is also at the root.

This is a single module, loosely defined.



Single Project w/ Module Structure
A “better” structure moves the source code into a single module.

30

├── app
│  ├── build.gradle.kts
│  └── src
│      ├── main
│      │  ├── kotlin
│      │  │  └── org
│      │  └── resources
│      └── test
│          ├── kotlin
│          │  └── org
│          └── resources
├── gradle
│  ├── libs.versions.toml
│  └── wrapper
│      ├── gradle-wrapper.jar
│      └── gradle-wrapper.properties
├── gradle.properties
├── gradlew
├── gradlew.bat
└── settings.gradle.kts

`app` is the module name.
• build.gradle.kts is specific to the module.
• settings.gradle.kts remains root level

Makes it easy to create another module at the 
root level of the project! This can be useful later.

A second module could be used for
• A second build target.
• Code that you wish to split out into a library.
• Shared code between modules.



Multi-Project Structure
More than one module, each with its own 
build.gradle.kts file
•  e.g. android, application, models, 
server 

Shared settings.gradle.kts file to specify 
which modules to include.

Each module has its own configuration. 
• android: config files to build native Android.
• application: config to build desktop/jvm.
• models: shared code, doesn’t build a target.
• server: builds a Ktor server (JAR file).

31

├── android
│  ├── build.gradle.kts
│  └── src
├── application
│  ├── build.gradle.kts
│  └── src
├── gradle
│  └── wrapper
├── gradle.properties
├── gradlew
├── gradlew.bat
├── local.properties
├── models
│  ├── build.gradle.kts
│  └── src
├── server
│  ├── build.gradle.kts
│  └── src
└── settings.gradle.kts



KMP Project Structure
The project breaks down the source code 
into two main projects.
composeApp includes all Compose code. It is 
further split into android, common, desktop 
and iOS.
• This is where you add source code.
iosApp includes the iOS project and 
configuration files, used to build and package  
using Xcode and other macOS tools.
• Integration point for Kotlin/iOS.
• You probably shouldn’t touch this!

32

.
├── build.gradle.kts
├── composeApp
│  ├── build.gradle.kts
│  └── src
│   ├── androidMain
│   ├── commonMain
│   ├── desktopMain
│   └── iosMain
├── gradle
├── gradle.properties
├── iosApp
│  ├── Configuration
│  │  └── Config.xcconfig
│  ├── iosApp
│  │  ├── Assets.xcassets
│  │  ├── ContentView.swift
│  │  ├── Info.plist
│  │  ├── Preview Content
│  │  └── iOSApp.swift
│  └── iosApp.xcodeproj
│  └── project.pbxproj
├── local.properties
└── settings.gradle.kts



How to create Gradle projects?

1. Command line
• gradle init
• Only recommended for very simple projects!

2. IntelliJ IDEA
• Kotlin project (+/- multiplatform option), or
• Kotlin Multiplatform.

3. Android Studio
• Android project template.

33

See the Getting-
Started section of 
the website for a 

walkthrough.



Reference

• Gradle.org. 2024. Gradle User Manual.
• Gradle.org. 2025. Version Catalogs.
• Philipp Lackner. 2025. The Ultimate Gradle Kotlin Beginner’s Crash Course
• Tom Gregory. 2024. Gradle Build Bible.

34

https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/version_catalogs.html
https://www.youtube.com/watch?v=RCRQlz78wCg
https://tomgregory.com/gradle/gradle-build-bible/

