
Unit Testing
CS 346 Application

Development

1

Why do we test?
The goal of testing is to ensure that the software that we produce meets our
objectives when deployed into the environment where it will be used.
How do we do this?

• We run our software under controlled conditions i.e. specific inputs and
environments, and check that expected & actual outcomes match.

Benefits of testing?
• Improve confidence in your software (cannot “guarantee correctness”).
• Produce an improved design, usually as a by-product of having written

tests. The process of writing tests forces us to structure our code more
thoughtfully.

• Occasionally find defects, deficiencies or design flaws from our tests.

2

How do we test?
We create a range of tests to provide
“complete” coverage across our code. We can
identify three levels of testing:

1. Functional (system) tests: testing
functionality from the perspective of the
user; end-to-end feature testing.

2. Integration tests: testing across multiple
classes or functional units, to check
interaction between objects.

3. Unit tests: tests operating at the class
level (or smallest functional unit), which
are check low-level interfaces and
behaviours.

3

When should we test?
Traditional views suggest that testing should be done after
implementation. This is a poor approach!
Testing should be done early in the development process.

• It gives you more opportunity to incorporate the feedback from testing.
• It’s much cheaper to “fix bugs” earlier in the process.

Tests should be matched to the stage of the development process:
• Unit Tests: done during implementation, when you are working on a class.
• Integration Tests: done after implementation, when you want to ensure that

classes work together (on all platforms).
• System Tests: done when features are complete and merged, to ensure that

the system continues working.

4

Test-Driven Development (TDD)
Promoted by Kent Beck around 2002 as an
Extreme Programming (XP) practice.
• The basic idea is that you write tests before

writing the corresponding implementation code.
TDD development cycle

1. Define an interface or specification for your class
or module.

2. Write a test against that interface.
3. Write the implementation code that causes the

test to pass.
4. Repeat until completed.

5

Advantages of continuous testing
There are some clear benefits of TDD:
• Early bug detection. You are building up a set of tests as you write code.
• Better designs. Making your code testable often means improving your

interfaces, having clean separation of concerns, and cohesive classes.
Testable code is by necessity better code.
• Confidence to refactor. Refactoring is the process improving your code

incrementally over time. You can only do this if you can easily verify that
you haven’t “broken anything” in the process. TDD helps you have the
confidence to refactor!
• Simplicity. Code that is built up over time this way tends to be simpler to

maintain and modify.

6

Our initial goal is to generate unit tests

Unit tests are meant to exercise the interface of a single class or
module.

• Unit tests should be very quick to execute and report results.
• They should return consistent results from a specified input.
• They should be integrated into our development workflow, so that they are

routinely executed. i.e. they need to be automated.

• Unit testing is behavioural testing i.e., test how classes behave across
a range of valid and invalid inputs.

7

Unit testing configuration
Setup the Kotlin test framework for unit testing.

8

Installing test dependencies
Junit is the standard test framework for Java testing. It’s possible to use it
with Kotlin, but Junit is not supported equally well across platforms.
Kotlin has a cross-platform test framework which is similar, but will work
across all Kotlin platforms e.g., iOS, Android, desktop). We’ll use it instead.
Make sure that you have these lines in your build.gradle.kts file.

dependencies {
 testImplementation(kotlin("test"))
}
tasks.test {
 useJUnitPlatform() // we’ll use Junit as the test runner when possible
}

9

Unit tests are just functions
Unit tests are just Kotlin classes and functions that check
inputs and outputs for what they are testing.
• Unit tests should be placed under src/test/kotlin.
• It’s best practice to have one test class for each class that

you want to test. e.g., classes Main and MainTest.
• Unit tests are automatically executed with gradle
build or can be executed manually with gradle test.

$ gradle build
BUILD SUCCESSFUL in 928ms
8 actionable tasks: 8 up-to-date // this includes tests

$ gradle test
BUILD SUCCESSFUL in 775ms
3 actionable tasks: 3 up-to-date

10

A Simple Unit Test

11

1. Create a class to test under src/main/kotlin.

class Sample() {
 fun sum(a: Int, b: Int): Int {
 return a + b
 }
}

2. Create a test class under src/test/kotlin. Add functions as tests.

import kotlin.test.Test
import kotlin.test.assertEquals

internal class SampleTest {
 @Test
 fun testSum() {
 private val testSample: Sample = Sample()
 assertEquals(42, testSample.sum(40, 2))
 }
}

Running tests

In the test class, you can execute a particular test by
clicking the Run icon in the gutter.

12

Press Cmd-N to generate a new test for
a selected class.

Assertions
We call utility functions to assert how the function should successfully
perform.

13

Function Purpose

assertEquals Provided value matches the actual value

assertNotEquals The provided and actual values do not match

assertFalse The given block returns false

assertTrue The given block returns true

Test Annotations
The @Test annotation tells the compiler that this is a unit test function.
The kotlin.test package provides annotations to mark test functions,
and denote how they are managed:

14

Annotation Purpose

@AfterTest Marks a function to be invoked after each test

@BeforeTest Marks a function to be invoked before each test

@Ignore Mark a function to be ignored

@Test Marks a function as a test

Writing Unit Tests
What are the characteristics of well-written tests?

15

Unit Test Characteristics

A unit test is a test that meets the following three requirements:
1. Verifies a single unit of behaviour,
2. Does it quickly, and
3. Does it in isolation from other tests.

Unit tests are the lowest-level tests that you can write:
• Tests should be small and quick to execute and return results.
• Each test focuses on a specific class or component, tested in isolation.
• Tests cannot have dependencies on other tests! i.e., can execute in any order.
• As an author, favour many small tests that each check a single thing over

monolithic tests.

If a test exercises more than a single class, it’s not a unit test. 16

Unit Test Composition
Every unit test should be a separate function, with the following steps:
1. Arrange:

• Setup the conditions for your test.
• Initialize variables, load data, setup any dependencies that you might need.
• Do NOT reuse anything from a different test.

2. Act:
• Execute the functionality that you want to test and capture the results.

3. Assert:
• Check that the actual and expected results match.
• Use asserts appropriately - see next page.

17

class CalcTest {
@Test
fun validPlus() {

val input = arrayOf("1", "+" , "2")
 val results = Calc().calculate(input)}
 assertEquals(3, results)

}

@Test
fun invalidPlus() {

val input = arrayOf("1", "+", "2")
 val results = Calc().calculate(input)
 assertNotEquals(5, results)

}

@Test
fun insufficientArguments() {

 try {
val input = arrayOf("1", "+")
Calc().calculate(input)

 } catch (e:Exception) {
assertTrue(true)

}
}

Test valid input conditions.
Create a unit test like this for each
operation or function.

Test invalid input conditions.
Create a unit test like this for each
operation or function to ensure that you
handle input errors correctly. Choose
representative values (or important
outliers)

Special-purpose unit test to
check a specific error condition.

19

Integration Tests
The next step; handling more complex interactions.

20

Integration tests

"Unit tests are great at verifying business logic, but it’s not enough to
check that logic in a vacuum. You have to validate how different parts
of it integrate with each other and external systems: the database, the

message bus, and so on." — Khorikov (2020).

• A unit test is a test that verifies a single unit of failure, in isolation.
• An integration test is a test with a broader scope.

• It checks multiple potential units of failure.
• Seeks to understand the interaction between components.
• Tests component dependencies.

21

This is the
primary

distinction vs.
unit testing.

What is a dependency?
• When you are examining a software component, we say that your

component may be dependent on one or more other software entities to
be able to run successfully. e.g. a library, or a different class, or a database.
Each of these represents code that affects how the code being tested will
execute.
• We often call the external software component or class a dependency.

That word describes the relationship (classes dependent on one another),
and the type of component (a dependency with respect to the original
class).
• A key strategy when testing is to figure out how to control these

dependencies, so that you're exercising your class independently of the
influence of other components.

22

Dependencies
Managed vs. unmanaged dependencies. Distinction between dependencies
that we control (managed), and those that may be shared (unmanaged).

• A managed dependency suggests that we directly control the state.
• e.g., A database could be single-file and used only for your application (managed) or

shared among different applications (unmanaged).

Internal vs. external dependencies. Distinction between running in the
context of our process (internal) or out-of-process (external).

• External intrinsically means unmanaged (and usually untrusted).
• e.g., A library is internal. If statically linked, we manage its state.
• e.g., An external library is external and probably unmanaged.

An unmanaged dependency cannot be tested directly.
• How can we trust that its state isn’t changing independently?

23

Test Doubles (aka Mocks)
How do you test unmanaged dependencies?
1. You test to the interface and not the concretion.
2. You can also create a “mock” or a test double that substitutes for the

concretion in testing.

A mock is a fake object that holds the expected behaviour of a real object but without
any genuine implementation. For example, we can have a mock File System that would
report a file as saved but would not actually modify the underlying file system.

Mocks, or test doubles, remove dependencies and allow for controlled
testing. They are extremely useful!

24

Mocking & Dependency Injection
Dependency injection is the practice of supplying dependencies to an object
in its argument list instead of allowing the object to create them itself.
Problem: Here’s a class that manages the underlying database connection.
How do you test it separately from the database?

class Persistence {
 val repo = UserRepository() // Create the required repo instance

fun saveUserProfile(val user: User) {
 repo.save(user)
 }

}

val persist = Persistence()
persist.saveUserProfile(user) // saves using the real hard-coded database

25

https://en.wikipedia.org/wiki/Dependency_injection

Example: Mock DB

26

Solution: change the Persistence class so that we pass in the dependency.
This allows us to control how the repository is created and even replace it
with a mock for testing.
class Persistence(val repo: IUserRepository) { // pass in the repo
 fun saveUserProfile(val user: User) {
 repo.save(user)
 }
}
class MockRepo : IUserRepository {
 // body with functions that mirror how the repo would work
 // but simpler/fake implementation
}

val mock = MockRepo()
val persist = Persistance(mock)
persist.saveUserProfile(user) // save using the mock database

References

• JetBrains. 2025. kotlin-test documentation.
• Khorikov. 2020. Unit Testing Principles, Practices, and Patterns. Manning.

ISBN ISBN 978-1617296277.

27

https://kotlinlang.org/api/core/kotlin-test/
https://kotlinlang.org/api/core/kotlin-test/
https://kotlinlang.org/api/core/kotlin-test/
https://www.manning.com/books/unit-testing

