
Refactoring
CS 346 Application

Development

1

Refactoring

“Refactoring is a disciplined technique for restructuring an existing
body of code, altering its internal structure without changing its
external behaviour. Its heart is a series of small behaviour preserving
transformations. Each transformation (called a "refactoring") does little,
but a sequence of these transformations can produce a significant
restructuring.”

— Martin Fowler, Refactoring. 2000, 2018.

We’re doing iterative development; code should be continually
improved as we work with it!

2

Refactoring

Refactoring is the process of changing a program to reduce its
complexity without changing the external behaviour of that program.
• It makes a program more readable (reducing the ‘reading complexity’)

and more understandable.
• It also makes it easier to change, which means that you reduce the

chances of making mistakes when you introduce new features.

3

“Clean Code”

• Martin (2008) would say that refactoring produces a “clean” codebase
that can be adapted over time as requirements change.
• A “clean" codebase is:

• Clear and easy to read: variable names that make sense, no “magic number”,
classes that aren’t bloated, well-constructed methods with no side effects.

• Simple: no unnecessary complexity that makes difficult to understand,
• Robust: resilient to change, and unlikely to break when small changes are

introduced.
• Intentionally designed: carefully segmented and structured with no code

duplication.
• Well-tested: unit and integration tests demonstrate that the code is working

correctly.

4

What are some examples?

• Cleaning up class interfaces and relationships.
• Fixing issues with class cohesion/coupling.
• Reducing or removing unnecessary dependencies.
• Simplifying code to reduce unnecessary complexity.
• Making code more understandable and readable.
• Adding more exhaustive tests.

5

6

TDD makes refactoring possible. Unit testing should give you confidence
that you will not break existing functionality when you refactor.

Code Smells

7

When to refactor?

Code smells? Time to refactor!

• Martin Fowler, a refactoring pioneer,
suggests that the starting point for
refactoring should be to identify
code ‘smells’.
• Code smells are indicators in the

code that there might be a deeper
problem.
• For example, very large classes may

indicate that the class is trying to do
too much. This probably means that its
structural complexity is high.

8

Example code smells

9

Large classes
• This suggests that the single responsibility principle is being violated. Break down large

classes into easier-to-understand, smaller classes.
Long methods/functions

• Long methods or functions may indicate that the function is doing more than one thing. Split
into smaller, more specific functions or methods.

Duplicated code
• Rewrite to create a single instance of the duplicated code that is used as required

Meaningless names
• Theses make the code harder to understand. Replace with meaningful names and check for

other shortcuts that the programmer may have taken.

Unused code
• This increases the reading complexity of the code. Delete it! It’s in your Git history right?

Example refactoring for complexity reduction

Reading complexity
• You can rename variable, function and class names throughout your program to

make their purpose more obvious.
Structural complexity

• You can break long classes or functions into shorter units that are likely to be more
cohesive than the original large class.

Data complexity
• You can simplify data by changing your database schema or reducing its complexity.

For example, you can merge related tables in your database to remove duplicated
data held in these tables.

Decision complexity
• You can replace a series of deeply nested if-then-else statements with guard clauses,

as I explained earlier in this chapter.

10

Refactoring Patterns

17

Goals of refactoring
• Make the code cleaner. Use refactoring to rename methods and

variables, break apart complex methods into simpler ones, or
create new data classes to isolate complexity.
• Not add any new functionality during refactoring.
• Ensure that all existing tests continue to pass. There are two

case where tests can break down:
1. You made an error during refactoring. This one is a no-brainer: go

ahead and fix the error.
2. Your tests were too low-level. For example, you were testing private

methods of classes. In this case, the tests are to blame. You can either
refactor the tests themselves or write an entirely new set of higher-
level tests.

18

Refactoring Patterns

• Martin Fowler. 2018. Refactoring: Improving the Design of Existing Code. 2nd
Edition. Addison-Wesley. ISBN 978-0134757599. https://refactoring.com/catalog/

https://github.com/HugoMatilla/Refactoring-Summary

IntelliJ IDEA has built-
in support for these

operations!

19

https://refactoring.com/catalog/
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/refactoring-source-code.html
https://www.jetbrains.com/help/idea/refactoring-source-code.html

Example: extract Method

• We might extract a method from existing code.
• Do this to make the original higher-level function is easier to read, or to

improve the ability of a function to be called from elsewhere in the code.

// original
fun printOwing(name: String, amount: Double) {
 printBanner()
 //print details
 println("name: $name")
 println("amount: $amount")
}

// refactored
fun printOwing(name: String, amount: Double) {
 printBanner();
 printDetails(name, amount);

}

fun printDetails (name: String, amount: Double) {
 println("name: $name")
 println("amount: $amount")

}

https://github.com/HugoMatilla/Refactoring-Summary - 1-extract-method 20

https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary

Example: Inline Method

• We might also the opposite: remove a pointless method.
• Do this when indirection is needless (simple delegation). Also do this when

group of methods are badly factored and grouping them makes them
clearer.

// original
fun getRating(): Int {
 return moreThanFiveLateDeliveries() ? 2 : 1

}

fun moreThanFiveLateDeliveries(): Boolean {
 return _numberOfLateDeliveries > 5

}

// refactored
fun getRating(): Int {
 return (_numberOfLateDeliveries > 5) ? 2 : 1;

}

https://github.com/HugoMatilla/Refactoring-Summary#2-inline-
method

21

https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary

Example: Move Method

• A method is using or used by more features of another class than the class
on which it is defined. Do this when classes collaborate too much and are
highly coupled.

• Create a new method with a similar body in the class it uses most. Either
turn the old method into a simple delegation or remove it altogether.

// original
class Class1 {
 method()

}

class Class2 { }

// refactored
class Class1 { }

class Class2 {
 method()

}

https://github.com/HugoMatilla/Refactoring-Summary#10-move-method 22

https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary

Example: Extract Class

• You have one class doing work that should be done by two. Create a new class
and move the relevant fields and methods from the old class into the new class.

• Do this when subsets of methods seem to belong together, or you have data that
could be managed as an independent class.

// original
class Person {
 name,
 officeAreaCode,
 officeNumber,
 getTelephoneNumber()

}

// refactored
class Person {
 name,
 getTelephoneNumber()

}

class TelephoneNumber {
 areaCode,
 number,
 getTelephoneNumber()

}

https://github.com/HugoMatilla/Refactoring-Summary#12-extract-class 23

https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary

Example: Remove Middle Man

• A class is doing too much simple delegation. Get the client to call
the delegate directly.
• Do this when the "Middle man" (the server) does “too much”.

// original
class ClientClass {
 val person = Person()
 person.doSomething()

}

class Person {
 fun doSomething() {
 val department = Department()
 department.doSomething()
 }

}

// refactored
class ClientClass {
 val person = Person()
 val department = Department()
 person.doSomething()
 department.doSomething()

}

https://github.com/HugoMatilla/Refactoring-Summary#15-remove-middle-man 24

https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary

Example: Introduce Foreign Method

• A server class you are using needs an additional method, but
you can't modify the source code for the original class.

// original
val newStart = Date(previousEnd.getYear(),previousEnd.getMonth(),previousEnd.getDate()+1)

// refactored: cannot change date class, so add “foreign method”
fun nextDay(date: Date): Date {
 return Date(date.getYear(),date.getMonth(),date.getDate()+1);

}
val newStart = nextDay(previousEnd)

// refactored: extend Date class, using Kotlin features
fun Date.nextDay(): Date {
 return Date(it.getYear(), it.getMonth(),it.getDate()+1);

}
val newStart = previousEnd.nextDay()

https://github.com/HugoMatilla/Refactoring-Summary#16-introduce-foreign-method 25

https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary
https://github.com/HugoMatilla/Refactoring-Summary

26

• Rename (Shift+F6): Rename a variable, method, class, or other element and
updates all references to it throughout the codebase.

• Extract Method (Ctrl+Alt+M): Convert a block of code into a new method.
• Inline (Ctrl+Alt+N): Replace method calls with the method's code.
• Change Signature (Ctrl+F6): Modify the signature of a method, including

parameters, return type, and visibility.
• Move (F6): Move classes, methods, or variables to a different package or class.
• Extract Variable (Ctrl+Alt+V): Extract a selected expression into a new variable.
• Extract Field (Ctrl+Alt+F): Extract a selected expression into a new field.
• Introduce Parameter (Ctrl+Alt+P): Introduce a new parameter to a

method/constructor.
• Safe Delete (Alt+Delete): Delete a file/element without breaking references.

IntelliJ supports refactoring! (Ctrl-T)

References

• JetBrains. 2025. kotlin-test documentation.
• Khorikov. 2020. Unit Testing Principles, Practices, and Patterns. Manning.

ISBN ISBN 978-1617296277.

27

https://kotlinlang.org/api/core/kotlin-test/
https://kotlinlang.org/api/core/kotlin-test/
https://kotlinlang.org/api/core/kotlin-test/
https://www.manning.com/books/unit-testing

