
Software Architecture
CS 346 Application

Development

1

Credits

• Some content adapted from: Sommerville. 2021. Engineering
Software Products: An Introduction to Modern Software Engineering.
Pearson. ISBN 978-1292376356.

2

https://www.amazon.ca/Engineering-Software-Products-Ian-Sommerville/dp/013521064X
https://www.amazon.ca/Engineering-Software-Products-Ian-Sommerville/dp/013521064X

Building software “correctly”

“It doesn’t take a huge amount of knowledge and skill to get a program
working. Kids in high school do it all the time… The code they produce
may not be pretty; but it works. It works because getting something to
work once just isn’t that hard.

Getting software right is hard. When software is done right, it requires
a fraction of the human resources to create and maintain. Changes are
simple and rapid. Defects are few and far between. Effort is minimized,
and functionality and flexibility are maximized.”

– Robert C. Martin, Clean Architecture (2016).

3

Architecture is as “fundamental organization of a system, embodied in its
components, their relationships to each other and the environment, and the
principles governing its design and evolution”. (IEEE 1471)

• Architectural design includes consideration of:
• A system’s overall design and organization,
• How the software is decomposed into components,
• How components communicate and work together,
• The technologies that you use to build the software.

• Many of your system’s characteristics are tied to architectural decisions
• e.g., performance, reliability, scalability.

Software architecture

4

Software qualities
What are the desirable characteristics of your software system?

5

Software qualities

The architecture of a system affects non-functional properties or qualities:
• Responsiveness: Does the system return results to users in a reasonable time?
• Reliability: Do the system features behave as expected?
• Availability: Can the system deliver its services when requested by users?
• Security: Does the system protect itself and users’ data from unauthorized

attacks and intrusions?
• Usability: Can system users easily and quickly access the features that they need?
• Maintainability: Can the system be readily updated and new features added

without undue costs?
• Resilience: Can the system continue to deliver services in the event of a failure?

6

In the Star Wars prequel Rogue One, the evil Empire have stored the
plans for their equipment in a single, highly secure, well-guarded, remote
location. This is called a centralized security architecture. It is based on
the principle that if you maintain all of your information in one place,
then you can apply lots of resources to protect that information.

Unfortunately (for the Empire), the rebels managed to breach their
security and stole the plans for the Death Star. Had the Empire chosen a
distributed security architecture, with different parts of the Death Star
plans stored in different locations, then stealing the plans would have
been more difficult.

Example: impact on system security

7

https://en.wikipedia.org/wiki/Rogue_One

• The benefits of a centralized security architecture are that it is easier
to design and build protection and that the protected information can
be accessed more efficiently.
• However, if your security is breached, you lose everything.
• If you distribute information, it takes longer to access all of the

information and costs more to protect it.
• If security is breached in one location, you only lose the information

that you have stored there.

Example: impact on system security

8

• This example shows a system with two
components (C1 and C2) that share a
common database.
• Assume C1 runs slowly because it must

reorganize the information in the
database before using it.
• The only way to make C1 faster might be to

change the database. This means that C2
also must also be changed, which may,
potentially, affect its response time.

Example: maintainability and performance

9

C1 and C2 share a database.

• This diagrams shows a different architecture
where each component has its own copy of
the parts of the database that it needs.
• If one component needs to change the database

organization, this does not affect the other
component.

• However, a multi-database architecture may
run more slowly and may cost more to
implement and change.
• A multi-database architecture needs a mechanism

(component C3) to ensure that the data shared by
C1 and C2 is kept consistent when it is changed.

Example: maintainability and performance

10

• Nonfunctional product characteristics such as security
and performance affect all users

• If you anticipate a long product lifetime, you will need to
create regular product revisions. Your architecture needs
to accommodate new features and technology.

• You can save a lot of time and effort, if you can reuse
large components e.g., open-source software. However,
reusing software constrains your architectural choices.

• The number of users of your software can change. This
can lead to performance issues unless you design your
architecture so that your system can be scaled up/down.

• For some products, it is important to maintain
compatibility with other software e.g., integration with a
different system.

Issues that influence architectural decisions

11

Factors to consider when
making architectural decisions.

Everything is a tradeoff.

• System maintainability is an attribute that reflects how difficult and
expensive it is to make changes to a system after it has been released
to customers.
• You improve maintainability by building a system from small self-contained

parts, each of which can be replaced or enhanced if changes are required.

• In architectural terms, this means that the system should be
decomposed into fine-grain components, each of which does one
thing and one thing only.
• However, it takes time for components to communicate with each other.

Consequently, if many components are involved in implementing a product
feature, the software will be slower.

Trade off: maintainability vs performance

12

• You can achieve security by designing the system protection as a
series of layers. An attacker has to penetrate all of those layers before
the system is compromised.
• Layers might include system authentication layers, a separate critical

feature authentication layer, an encryption layer and so on.
• Architecturally, you can implement each of these layers as separate

components so that if one of these components is compromised by
an attacker, then the other layers remain intact.

Trade off: security vs usability

13

• You can achieve security by designing
the system protection as a series of
layers.
• An attacker has to penetrate all those

layers before the system is
compromised.
• Architecturally, you can implement each

of these layers as separate components
so that if one of these components is
compromised by an attacker, then the
other layers remain intact.

Trade off: security vs usability

14

Layering software protects critical data.

However, a layered approach affects usability:
• Users must remember information, like

passwords. Interaction with the system is
slowed down by its security features.

• Many users find this irritating and often
look for work-arounds so that they do not
have to re-authenticate.

To avoid this, you need an architecture:
• That doesn’t have “too many” security

layers (whatever that means),
• That doesn’t enforce unnecessary security,
• That provides helper components that

reduce the load on users.

Trade off: security vs usability

15

Layering software protects critical data.

• Availability is particularly important in enterprise products, such as
products for the finance industry, where 24/7 operation is expected.
• The availability of a system is a measure of the amount of ‘uptime’ of that system.
• Availability is normally expressed as a percentage of the time that a system is

available to deliver user services.
• Architecturally, you achieve availability by having redundant components in

a system.
• e.g., you include sensor components that detect failure and switching components

that switch operation to a redundant component when a failure is detected.
• This takes time and increases the cost of system development.
• It also adds complexity to the system and increases the chances of

introducing bugs and vulnerabilities.

Trade off: availability vs time-to-market

16

Modularity
How to structure your system.

17

A component is an element of a software system that implements a
coherent set of functionality or features.
• Can be singular or plural (i.e. a common API).
• High cohesion: Each component works in isolation.
• Loose coupling: Loose dependencies between components.

When designing software architecture:
• First design the component interfaces and relationships.
• Leave the implementation of interfaces to a later stage.

Components == Building blocks

18

Modularity == Grouping components
Modularity is the logical grouping of components to enforce separation-
of-concerns (loose coupling). Programming languages support this in
multiple ways e.g., namespaces for C++ or C#.
Kotlin supports modularity in two ways.
• Modules: A top-level collection of related components.

• We generally restrict module use to platform targets, or shared
libraries/components.

• Packages: A collection of logically related functionality.
• Packages should contain related classes, functions. e.g., views, models.
• Use packages to keep components distinct and enforce boundaries.

19

Services provided by components

20

Some components are standalone, but often components work together to
provide a service and need a clean and consistent interface.

• Complexity in a system architecture arises because of the number and
the nature of the relationships between components in that system.
• When decomposing a system into components, you should try to

avoid unnecessary software complexity:
• Localize relationships: If there are relationships between components A and

B, these are easier to understand if A and B are defined in the same module.
• Reduce shared dependencies: Where components A and B depend on some

other component or data, complexity increases because changes to the
shared component mean you must understand how these changes affect
both A and B.

• Use local data: avoid sharing data between components.

Architectural complexity

21

Architectural design guidelines

22

Examples of component relationships

23

Architectural styles
How can we organize components?

24

Adopt a suitable architectural style
An architectural style (aka pattern) is an overall structure that
describes how our components are organized and structured, and
how they communicate.
• Each style describes an example of modularity + class relations.
• Like design patterns, an architectural style is a general solution that

has been found to work well at solving specific types of problems.
• An architectural style has a unique topology (organization of

components) and characteristics (qualities) for that topology.

25

Antipattern: “Big Ball of Mud”
A Big Ball of Mud is a haphazardly structured,
sprawling, sloppy, duct-tape-and-baling-wire,
spaghetti-code jungle.
These systems show unmistakable signs of
unregulated growth, and repeated, expedient
repair.

-- Foote & Yoder 1997.

26

A Big Ball of Mud isn’t intentional—it’s the result of a system
being tightly coupled, where any module can reference any other
module. A system like this is extremely difficult to extend or modify.

Console: Pipeline architecture
A pipeline architecture transforms data in a sequential manner. e.g., streams.
Usually one outbound starting point (source) and one or more inbound
termination points (sinks).
• Pipes are unidirectional, accepting input, and producing output.
• Filters are entities that perform operation on data that they are fed. Each

filter performs a single operation, and they are stateless.

27

• Easy to extend by adding nodes.
• Filters are stateless, and testable.
• Broadly applicable.

Applications: Layered architecture

A layered architecture is meant to model back-and-forth interaction between a user
and an interactive. software into horizontal layers, where each layer represents a
logical division of functionality. system.

28

Each layer has specific functionality that
is presents to the layer above (i.e. lower
layers provide services up the stack).
• Presentation: UI (input/output).
• Business Layer: application logic.
• Persistence Layer: describes how to

manage and save application data.
• Database Layer: the underlying data

store that stores data.

• The distribution architecture of a software system defines the servers
in the system and the allocation of components to these servers.
• Client-server architectures are a type of distribution architecture that

is suited to applications where clients access a shared database and
business logic operations on that data.
• In this architecture, the user interface is implemented on the user’s

own computer or mobile device.
• Functionality is distributed between the client and one or more server

computers.

Distribution architecture

29

Client-server architecture

30

The model-view-controller pattern

31

• Client-server communication normally uses the HTTP protocol.
• The client sends a message to the server that includes an instruction such as

GET or POST along with the identifier of a resource (usually a URL) on which
that instruction should operate. The message may also include additional
information, such as information collected from a form.

• HTTP is a text-only protocol so structured data has to be represented
as text. There are two ways of representing this data that are widely
used, namely XML and JSON.
• XML is a markup language with tags used to identify each data item.
• JSON is a simpler representation based on the representation of objects in the

Javascript language.

Client-server communication

32

Multi-tier client-server architecture

33

• Services in a service-oriented architecture are stateless components,
which means that they can be replicated and can migrate from one
computer to another.
• Many servers may be involved in providing services
• A service-oriented architecture is usually easier to scale as demand

increases and is resilient to failure.

Service-oriented architecture

34

Service-oriented architecture

35

• Data type and data updates
• If you are mostly using structured data that may be updated by different system

features, it is usually best to have a single shared database that provides locking and
transaction management. If data is distributed across services, you need a way to
keep it consistent and this adds overhead to your system.

• Change frequency
• If you anticipate that system components will be regularly changed or replaced, then

isolating these components as separate services simplifies those changes.
• The system execution platform

• If you plan to run your system on the cloud with users accessing it over the Internet,
it is usually best to implement it as a service-oriented architecture because scaling
the system is simpler.

• If your product is a business system that runs on local servers, a multi-tier
architecture may be more appropriate.

Issues in architectural choice

36

• A key decision that you have to make is whether to design your
system to run on customer servers or to run on the cloud.
• For consumer products that are not simply mobile apps I think it

almost always makes sense to develop for the cloud.
• For business products, it is a more difficult decision.

• Some businesses are concerned about cloud security and prefer to run their
systems on in-house servers. They may have a predictable pattern of system
usage so there is less need to design your system to cope with large changes
in demand.

• An important choice you have to make if you are running your
software on the cloud is which cloud provider to use.

Server

37

MVC + MVVM
A “standard” application architecture (as much as there can be one).

38

39

MVC originated with Smalltalk (1988).
It’s an attempt to build a generic architectural model for interactive applications.
• Input is accepted and interpreted by the Controller,
• Data is routed to the Model, where it changes program state.
• Changes are published to the View(s) and are reflected to the user as output.

Model-View Controller

40

Components
• View: displays data (or a portion of it)
• Controller: handles input from the user.
• Model: stores the data.

There are often multiple views.

MVC uses the Observer pattern to notify
Subscribers. Any Subscriber (i.e. any class that
implements the interface) can accept notification
messages from the Publisher.

This is “standard” MVC. There are many variations!

MVC Implementation

https://en.wikipedia.org/wiki/Observer_pattern

Problems with MVC?

However, there are a few challenges with standard MVC.
• Graphical user interfaces bundle the input and output together into

graphical “widgets” on-screen (see user interfaces lecture).
• This makes input and output behaviours difficult to separate
• In-practice, the controller class is rarely implemented.

• Modern applications tend to have multiple screens.
• Need something like a coordinator class to control visibility of screens.
• Each screen may have its own data needs which cannot be handled by a

single model.
• This architecture is completely standalone.

• How do you handle services? Databases?

41

Layered Architecture

Let’s revisit the layered architecture from earlier
and see if we can adapt it as a “fix” for MVC.
Reminder
• Each layer has specific functionality that is

presents to the layer above (i.e. lower layers
provide services to layers above).

• Requests flow down, and data flows up.
• This also means that dependencies extend down.

There is a clear separation of concerns.
• Each layer is independent, and testable.

42

Remember: these are layers, and each may
require multiple classes to implement them.

Model View View-Model (MVVM)

Model-View-ViewModel was invented by Ken Cooper and Ted Peters in 2005. It was
intended to simplify event-driven programming and user interfaces in C#/.NET.

MVVM adds a ViewModel that sits between the View and Model.

Why? Localized data.
• We often want to pull “raw” data from the Model and modify it before displaying

it in a View e.g., currency stored in USD but displayed in a different format.
• We sometimes want to make local changes to data, but not push them

automatically to the Model e.g., undo-redo where you don’t persist the changes
until the user clicks a Save button.

43

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Event-driven_programming

Refinement from our layered architecture:
UI layer consists of View + VM
• Each View has one VM.
• Requests flow from VM to Domain

classes.
Same flow as earlier
• Requests down, data up.
• Notification used with VM, which in turn

propagates data into Views.

44

MVVM

45

MVVM Implementation

• View: displays data (or a portion of it)
• ViewModel: localized data for the view.
• Model: stores the main data.

There are often multiple views. They may each
display different data, or views may display the
same data. Each View typically has one
ViewModel associated with it.

MVVM also uses the Observer pattern to notify
Subscribers, but unlike MVC, the subscriber is
typically a ViewModel. The View and ViewModel
are often tightly coupled so that updating the
ViewModel data will refresh the View.

https://en.wikipedia.org/wiki/Observer_pattern

46

Dependency rule

Dependencies flowing “down” means that
each layer can only communicate directly with
the layer below it.
In this example, the UI layer can manipulate
domain objects, which in turn can update their
own state from the Model.

e.g. a Customer Screen might rely on a
Customer object, which would be populated
from the Model data (which in turn could be
fetched from a remote database).

47

Update rule

Notifications flowing up means that
data changes must originate from the
“lowest” layers.

e.g., a Customer record might be
updated in the database, which triggers
a change in the Model layer. The Model
in turn notifies any Subscribers (via the
Publisher interface), which results in
the UI updating itself.

In other words, updates flow “up”.

48

Abstractions not concretions

Represent your components as interfaces, and
implement based on those interfaces. This is
critical for testing later!

e.g., our Database is an implementation of a
generic database interface. This lets us swap in
a different database for testing.

We’ll discuss more when we discuss unit
testing and dependency injection.

Benefits

Layering our architecture really helps to address our earlier goals (reducing coupling,
setting the right level of abstraction). Additionally, it provides these other benefits:
• Independence from frameworks. The architecture does not depend on a particular set

of libraries for its functionality. This allows you to use such frameworks as tools, rather
than forcing you to cram your system into their limited constraints.

• It becomes more testable. Layers can be tested independently of one another. e.g., the
business rules can be tested without the UI, database, web server.

• Independence from the UI. The UI can be changed without changing the rest of the
system. A web UI could be replaced with a console UI, for example, without changing the
business rules.

• Independence from the data sources. You can swap out Oracle or SQL Server for Mongo,
BigTable, CouchDB, or something else. Your business rules are not bound to the database
or to the source of your data.

49

• Software architecture is the fundamental organization of a system embodied in
its components, their relationships to each other, and to the environment, and
the principles guiding its design and evolution.

• The architecture of a software system has a significant influence on non-
functional system properties such as reliability, efficiency and security.

• Architectural design involves understanding the issues that are critical for your
product and creating system descriptions that shows components and their
relationships.

• The principal role of architectural descriptions is to provide a basis for the
development team to discuss the system organization. Informal architectural
diagrams are effective in architectural description because they are fast and easy
to draw and share.

• System decomposition involves analyzing architectural components and
representing them as a set of finer-grain components.

Summary 1

50

• To minimize complexity, you should separate concerns, avoid
functional duplication and focus on component interfaces.
• Applications often have a common layered structure including user

interface layers, application-specific layers and a database layer.
• The distribution architecture in a system defines the organization of

the servers in that system and the allocation of components to these
servers.
• Multi-tier client-server and service-oriented architectures are the

most commonly used architectures for web-based systems.

Summary 2

51

References

• Fowler. 2002. Patterns of Enterprise Application Architecture.
Addison-Wesley. ISBN 978-0321127426.
• Fowler. 2019. Software Architecture Guide.
• Martin. 2017. Clean Architecture: A Craftsman’s Guide to Software

Structure and Design. Pearson. ISBN 978-0134494166.
• Richards & Ford. 2020. Fundamentals of Software Architecture: An

Engineering Approach. O’Reilly. ISBN 978-1492043454.

52

https://www.amazon.ca/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
https://martinfowler.com/architecture/
https://www.amazon.ca/Clean-Architecture-Craftsmans-Software-Structure/dp/0134494164
https://www.amazon.ca/Clean-Architecture-Craftsmans-Software-Structure/dp/0134494164
https://www.oreilly.com/library/view/fundamentals-of-software/9781492043447/
https://www.oreilly.com/library/view/fundamentals-of-software/9781492043447/

