
Building
Desktop Applications

CS 346 Application
Development

History: WIMP interfaces
• Paradigm designed at Xerox PARC in 1973.

• See also desktop metaphor in computing.

• Popularized with Apple Macintosh in 1984.
• Windows, Icons, Menus, Pointer

• Each program runs in a self-contained and
isolated Window.

• Icons represent actions e.g., printer, trash can.
• Menus represent commands that can be issued

by the user.
• Pointer refers to the mouse-pointer.

• Advantages: Discoverable, Simple, Familiar.
• Disadvantages: Resources, Accessibility.

2

Macintosh user interface from 1984.

https://en.wikipedia.org/wiki/Desktop_metaphor

What differs from console?
1. Graphical user interfaces (GUI)
• Applications constrained to “windows”.
• Output via high-resolution graphics, animation.

2. Navigation
• Maneuver through windows/screens.

3. Keyboard + mouse interaction
• Keyboard shortcuts.
• Menus e.g., File, Edit, View, Window.
• Features: undo/redo, copy/paste, drag/drop.

3

Toolkits

• Kotlin Multiplatform: Compiler technologies that allow you to target
multiple native platforms and share code between them.
• e.g., sharing between Android and JVM.

• Jetpack Compose: Google’s UI toolkit that was originally designed for
Android development.
• Compose Multiplatform: A port of Jetpack Compose to other

platforms, including desktop and iOS.

• We’re mostly going to talk about Compose Multiplatform.
• Standard functionality we’ve discussed + desktop specific additions.

4

https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform.html

Getting started
How to create a desktop project.

5

Step 1: Create a Project

A desktop project is simply a
regular Kotlin project with the
Compose Dependencies added.

See course website:
Reference > Getting Started >
Gradle project

6

https://student.cs.uwaterloo.ca/~cs346/1259/reference/getting-started/gradle-project/

7

build.gradle.kts – the main build configuration file

libs.versions.toml– version catalog that lists dependencies

gradlew – script to run gradle tasks

src/main/kotlin – source code goes here
src/test/kotlin – unit tests go here

Step 2: Modify the directory structure

You will need to update the version catalog:

libs.versions.toml
[versions]
kotlin-ver = "2.0.20"
compose-plugin = "1.6.11"

[plugins]
kotlin-jvm = { id = "org.jetbrains.kotlin.jvm", version.ref = "kotlin-version" }
jetbrains-compose = { id = "org.jetbrains.compose", version.ref = "compose-plugin" }
compose-compiler = { id = "org.jetbrains.kotlin.plugin.compose", version.ref = "kotlin-ver” }

8

Step 3: Add dependencies

Use the most
recent version of

each dependency.

You will need to update the build.gradle.kts:

build.gradle.kts
plugins {
 alias(libs.plugins.kotlin.jvm)
 alias(libs.plugins.jetbrains.compose)
 alias(libs.plugins.compose.compiler)
}

dependencies {
 implementation (compose.desktop.currentOs)
}

compose.desktop {
 application {
 mainClass = “MainKt"
 }
}

9

Step 3: Add dependencies

Desktop Gradle Tasks
Use the Gradle menu (View > Tool Windows > Gradle).

10

Desktop Composables

11

Components specific to Compose Multiplatform and desktop applications.

Window

• One or more windows are required aka top-level composable.
• “Regular” window behavior is handled by the OS/toolkit.

• e.g., resizing, dragging, minimize, maximize.
• Can replace window contents dynamically as-needed.

• Parameters
• Title - Window title
• onCloseRequest - lambda or function name to call on close
• State - WindowState, including dimensions, position
• contents - Window contents (also pass as trailing lambda)

12

13

fun main() {
 application {
 MaterialTheme {
 Window(
 title = "Window 1",
 onCloseRequest = ::exitApplication
) {
 Text("This is a window")
 }

 Window(
 title = "Window 2",
 onCloseRequest = ::exitApplication
) {
 Text("This is also a window")
 }
 }
 }
}

samples/desktop/desktop-compose -> run MultipleWindows main method

Window
Independent, each has its

own scene-graph.

14

fun main() {
 application {
 MaterialTheme {

 Window(
 title = "WindowState",
 state = WindowState(
 position = WindowPosition(Alignment.center),
 size = DpSize(300.dp, 200.dp)
),
 onCloseRequest = ::exitApplication
) {
 Text("This is a window")
 }
 }

 }
}

samples/desktop/desktop-compose -> run WindowState main method

(WindowState)
Controls position, size.

15

Window(
 title = "Main Window",
 onCloseRequest = ::exitApplication,
 state = WindowState(position = WindowPosition(Alignment.Center))
) {

 var isDialogOpen by remember { mutableStateOf(false) }
 Button(onClick = { isDialogOpen = true }) {
 Text(text = "Open dialog")
 }

 if (isDialogOpen) {
 DialogWindow(
 title = "Dialog Window",
 onCloseRequest = { isDialogOpen = false },
 state = rememberDialogState(position = WindowPosition(Alignment.Center))
) {
 Text("Dialog text goes here")
 }
 }
}

samples/desktop/desktop-compose -> run Dialogs main method

Dialog Box
Foreground modal window

16

fun main() = application {
Window(onCloseRequest = ::exitApplication) {

App(this, this@application)
}

}

@Composable
fun App(

windowScope: FrameWindowScope,
appScope: ApplicationScope

) {
windowScope.MenuBar {

Menu("File", mnemonic = 'F') {
val nextWindowState = rememberWindowState()
Item(

"Exit",
onClick = { appScope.exitApplication() },
shortcut = KeyShortcut(

Key.X,
ctrl = false)

)
}

}
}

System Menu
OS determines position

samples/desktop/desktop-compose -> run SystemMenus main method

17

val trayState = rememberTrayState()
val notification = rememberNotification(
 "Notification", "Message from MyApp!”
)

Tray(
 state = trayState,
 icon = TrayIcon,
 menu = {
 Item("Increment value", onClick = { count++})
 Item("Send notification", onClick = {
 trayState.sendNotification(notification)
 })
 Item("Exit", onClick = { isOpen = false })
)

System Tray
Taskbar or system tray icon

samples/desktop/desktop-compose -> run SystemTray main method

18

Box(
 modifier = Modifier
 .fillMaxSize()
 .verticalScroll(stateVertical)
 .padding(end = 12.dp, bottom = 12.dp)
 .horizontalScroll(stateHorizontal)
) {
 Column {
 for (item in 0..30) {
 TextBox("Item #$item")
 }
 }
}

VerticalScrollbar(
 modifier = Modifier.align(Alignment.CenterEnd)
 .fillMaxHeight(),
 adapter = rememberScrollbarAdapter(stateVertical)
)

HorizontalScrollbar(
 modifier = Modifier.align(Alignment.BottomStart).fillMaxWidth,
 adapter = rememberScrollbarAdapter(stateHorizontal)
)

Scrollbar
Explicit, work with mouse/kb

Navigation
How to move between screens?

19

Jetpack Navigation Concepts

The standard navigation library for Android is Jetpack Navigation.
It’s been ported to desktop as well!

Common terms:
• A navigation graph describes all of the possible screen destinations

and connections between then.
• A destination is a node that you can navigate to. This can be a

composable (screen), or a dialog, or a different navigation graph (for
complex user interfaces).
• A route identifies a destination and defines how to navigate to it.

20

https://developer.android.com/guide/navigation

Jetpack Navigation Library

The Navigation library represents the user’s path as a stack of
destinations. You can use this to move forward/backwards through
navigation history.

Core classes:
• NavController: provides APIs for core functionality.
• NavHost is a composable that displays the contents for the current

destination (determined by the navigation graph).
• NavGraph describes all possible destinations and the connections

between them.

21

https://developer.android.com/guide/navigation

fun main() {
 application {
 MaterialTheme {

Window(
 title = "Navigation",
 onCloseRequest = ::exitApplication
) {
 val navController = rememberNavController()
 NavHost(
 navController = navController,
 startDestination = ScreenA
) {
 composable<ScreenA> {
 ScreenAView(navController)
 }
 composable<ScreenB> {
 val args = it.toRoute<ScreenB>()
 ScreenBView(navController, args)
 }
 composable<ScreenC> {
 val args = it.toRoute<ScreenC>()
 ScreenCView(navController, args)
 }
 }
 }
 }
 }
}

It’s the almost
the same as the
Android sample!desktop-

specific

standard
navigation

code

samples/desktop/desktop-compose -> run Navigation main method

Resources
How to load and use static content.

23

What are resources?

• Resources are static content e.g., images, sounds, fonts, strings that
you might use in your application.
• These can be:

• Bundled in your application e.g., image icon.
• Loaded by your application at runtime.

• Use cases:
• Interacting with content e.g., the user directs your app to a specific resource

like an image or video file to playback.
• Localization e.g., replacing strings with locale-specific translations.
• Accessibility e.g., replacing static images with high-contrast versions.

24

Platform specific! e.g., resources
could be on a HDD (desktop), SD
card or cloud (mobile).

https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-resources.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-resources.html

Resource Guidelines

• Almost all resources are read synchronously in the caller thread.
• Assumes small/fast to load.
• There are stream APIs for loading large files/resources (more on that later).

• Bundled resources
• Place in the “resources/” folder in your source tree, and Kotlin can load them.
• Will be packaged with your application by Gradle.

• Non-bundled (loaded at runtime)
• Be careful: you will not have permission to access most locations.
• Best practice: save files/resources in the user’s home directory

e.g., val homedir = System.getProperty("user.home")

25

Interaction
Handling mouse and keyboard input on desktop.

26

Keyboard Input

27

fun main() = application {
Window(

title = "Key Events",
state = WindowState(width = 500.dp, height = 100.dp),
onCloseRequest = ::exitApplication,
onKeyEvent = {

if (it.type == KeyEventType.KeyUp) {
println(it.key)

}
}

) {
val text = remember { mutableStateOf("") }
val textField = TextField(

value = text.value,
onValueChange = { text.value = it }

)
}

}

Window-level
event handler

Widget-level
event handler

samples/desktop/desktop-compose -> run Interaction main method

Mouse Clicks

28

Box(
modifier = Modifier

.background(Color.Magenta)

.fillMaxWidth(0.9f)

.fillMaxHeight(0.2f)

.combinedClickable(
onClick = { text = "Click! ${count++}” },
onDoubleClick = { text = "Double click! ${count++}” },
onLongClick = { text = "Long click! ${count++}” }

)
)

Multi-event handler
necessary to handle
all mouse inputs.

samples/desktop/desktop-compose -> run Interaction main method

Mouse Movement

29

var color by remember { mutableStateOf(Color(0, 0, 0)) }

Box(
modifier = Modifier

.background(Color.Magenta)

.fillMaxWidth(0.9f)

.fillMaxHeight(0.2f)

.onPointerEvent(PointerEventType.Move) {
val position = it.changes.first().position
color = Color(

position.x.toInt() % 256,
position.y.toInt() % 256, 0

)
}

)

Drag handler. `it`
contains a list of
mouse movements.

samples/desktop/desktop-compose -> run Interaction main method

Testing
Considerations when writing unit tests for desktop applications.

30

Adding GUI testing

Guidelines from earlier still apply.
Domain, Model, Service already covered.

What do we need to change in our tests?
• Testing interaction & output (View)
• Test UI state (ViewModel)

31

32

fun main() {
 application {
 Window(title = "Test Example", onCloseRequest = ::exitApplication)
 {
 var text by remember { mutableStateOf("Button hasn't been clicked") }

 Column(
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.Center,
 modifier = Modifier.fillMaxSize().padding(10.dp)
) {
 Text(
 text = text,
)
 Button(
 onClick = { text = "Clicked!" },
) {
 Text("Click me")
 }
 }
 }
 }
}

samples/desktop-compose -> run Example main method

This is the behaviour we want to
test. i.e. click on the button and
see how the UI changes.

33

class ExampleTest {
 @get:Rule
 val rule = createComposeRule()

 @Test
 fun myTest(){
 rule.setContent {
 var text by remember { mutableStateOf("Button hasn't been clicked") }

 Column(
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.Center,
 modifier = Modifier.fillMaxSize().padding(10.dp).testTag("column") // tag
)
 {
 Text(
 text = text,
 modifier = Modifier.testTag("text") // tag
)
 Button(
 onClick = { text = "Clicked!" },
 modifier = Modifier.testTag("button") // tag
) {
 Text("Click me")
 }
 }
 }

 // Tests the declared UI with assertions and actions of the JUnit-based testing API
 rule.onNodeWithTag("text").assertTextEquals("Button hasn't been clicked")
 rule.onNodeWithTag("button").performClick()
 rule.onNodeWithTag("text").assertTextEquals("Clicked!")
 }
}

Test actions performed
in-order.

What actions can you test?

• performClick()
• performKeyPress()
• performKeyInput ()
• performMouseInput ()
• performMouseMultiModal ()
• performScrollTo()
• performFirstLinkClick()

34

rule
• onNodeWithTag
• onNodeWithText
• onNode
• onAllNodes
• onRoot

• assertExists
• assertDoesNotExist
• assertDeactivated
• assertTextEquals
• assertTextContains
• assertHasClickAction
• assertIsDisplayed
• assertIsEnabled
• assertHasFocus

Architecture
Components and structure for desktop applications.

35

We will use Model-View-ViewModel, a layered
architecture designed for graphical user interfaces.

Introduce Standard Layers
• Each layer has specific functionality.
• Requests flow down, and data flows up.
• This also means that dependencies extend down.

Expand the User Interface layer
• View: the interactive components
• ViewModel: backing state for these components

36

Recall: MVVM

37

Main classes
• View: input/output
• ViewModel: state for the view.
• Model: stores the application data.

There are often multiple views. Each View
typically has one ViewModel associated with it.

MVVM uses the Observer pattern. The model
typically notifies the ViewModel of state changes.
The View and ViewModel are often tightly
coupled so that updating the ViewModel data will
refresh the View.

Recall: MVVM Implementation

https://en.wikipedia.org/wiki/Observer_pattern

mm-desktop
Using Compose Multiplatform to port our application to desktop.

38

Layered architecture

Shown here
• View & ViewModel: the user interface, and its local state

management.
• Model: stores the TODO items, and coordinates any

changes to the list. Also handles save/load of data.
• IStorage & Storage: low-level interface and database /

filestorage layer.

Not shown
• Main function, used as an entry point.

39

Main function

40

fun main() = application {
 MaterialTheme {
 Window(
 title = "Mastermind TODO",
 state = rememberWindowState(
 position = WindowPosition(Alignment.Center),
 size = DpSize(400.dp, 600.dp)
),
 onCloseRequest = ::exitApplication,
) {
 // wire dependencies together
 // storage <-- model <-- viewModel <-- view
 val storage = DBStorage(".mm.db")
 val model = Model(storage)
 val viewModel = ViewModel(model)

 // top-level composable
 View(viewModel)
 }
 }
}

Window setup

Dependencies

See GitHub: demos/mm-desktop

Root of scene graph

View
@Composable
fun View(viewModel: ViewModel) {
 val tasks = viewModel.tasks
 val scaffoldState = rememberScaffoldState()

 var showAddDialog by remember { mutableStateOf(false) }
 var showEditDialog by remember { mutableStateOf(false) }
 var selectedTask by remember { mutableStateOf<Task?>(null) }

 Scaffold(
 scaffoldState = scaffoldState,
 topBar = {
 TopAppBar(
 title = { Text("Task Manager") },
 actions = {
 IconButton(onClick = { showAddDialog = true }) {
 Icon(Icons.Default.Add,
 contentDescription = "Add Task")
 }
 // ……

41See GitHub: demos/mm-desktop

ViewModel

42

class ViewModel(private val model: Model) : Subscriber {

 var tasks by mutableStateOf(model.tasks.filterNotNull())
 init { model.add(this)}

 override fun update() {
 tasks = model.tasks.filterNotNull()
 }

 fun addTask(title: String) { model.add(title)}

 fun deleteTask(position: Int) { model.del(position)}

 fun updateTask(task: Task) {
 val existingTask = model.tasks.find { it?.id == task.id }
 if (existingTask != null) {
 existingTask.title = task.title
 existingTask.description = task.description
 existingTask.dueDate = task.dueDate
 existingTask.tags = task.tags
 model.notifySubscribers()
 }
 }
}

// intermediary between view/model

// pass user requests to the model

// change to model data -> update() called

See GitHub: demos/mm-desktop

Model
class Model(private val storage: IStorage): Publisher() {
 var tasks = mutableListOf<Task?>()

 init {
 tasks = storage.readAll().toMutableList()
 }

 fun add(contents: String) {
 val task = Task(
 position = tasks.size + 1, title = contents,
 description = "", dueDate = "", tags = "”
)
 storage.create(task)
 tasks.add(task)
 }

 fun del(position: Int) {
 val pos = position
 val task = tasks.find { it?.position == pos } ?: return
 storage.delete(task)
 tasks.remove(task)
 reposition()
 }
}

43

This hasn’t
changed from

the console
version.

See GitHub: demos/mm-desktop

Storage interface

interface IStorage {
 // canonical operations
 fun create(task: Task): Int
 fun read(id: Int): Task?
 fun readAll(): List<Task?>
 fun update(task: Task)
 fun delete(task: Task)
 fun deleteAll()

 // extended operations
 fun upsert(task: Task)
}

44

This hasn’t
changed from

the console
version.

See GitHub: samples/demos/mm-desktop

Reference

• Bolt UIX. 2025. Kotlin Multiplatform: What You Can Only Do in
desktopMain
• JetBrains. 2025. Compose Multiplatform Documentation.
• JetBrains. 2025. Kotlin Multiplatform Documentation.

45

https://www.boltuix.com/2025/07/kotlin-multiplatform-what-can-only-be.html
https://www.boltuix.com/2025/07/kotlin-multiplatform-what-can-only-be.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/get-started.html

