
Building
Mobile Applica1ons

CS 346 Applica-on
Development

Steve Jobs, Apple CEO, introduces the original iPhone at Macworld San Francisco in 2007. 2

https://www.youtube.com/watch?v=MnrJzXM7a6o

Smartphone Design
• Smartphones as personal, portable computing.
• Originally a mashup of other devices.

• “An iPod, a phone, an internet communicator”.
• Mobile phone category evolved over 2-3 years.

• What makes them unique?
• Touch-screens! Touch input, customizable output.
• Optimized for simple, ad hoc interaction.
• A single device for all your needs (data).

• Design concerns
• Processing efficiency, battery life.
• Security! Applications needed to be sandboxed.

The first iPhone, introduced in Jan
2007, and available for sale in June
of that year. Apple sold more than 6
million phones before replacing this
model with the iPhone 3G in 2008.

3

Android
• History of Android

• Founded by Andy Rubin in 2003 to build a camera OS.
• Pivoted to phone OS in 2004, sold to Google in 2005.
• By Dec 2006 Google was tesGng phones w. keyboards.
• Redesigned for touch-screens before phones launched.

• Android is the world’s “most popular OS”.
• Based on Linux kernel; porGons are open source.
• Ships on different devices e.g., TV boxes, tablets, phones.
• “Billions of Android devices”.

• Features
• Comparable features to iPhone.
• Tight integraGon with Google services.

The first Android phone was the
HTC Dream, which launched in
October 2008 – approximately 18
months after the first iPhone.

4

Android Features

• Graphical User Interface
• Applications presented as pages of icons.
• An application usually runs full-screen.

• Forward/backward screen navigation within an application.
• Navigate through running applications.

• Custom UI displays
• Side-by-side applications, Live-regions

• Tight integration with Google applications
• Gmail, Google docs, other services.
• Google search, “Ok Google” voice chat.

• Wider range of hardware
• Many vendors, who produce a wider range of devices.

5

Ge#ng Started
How to create an Android project.

6

Step 1: Create a Project

An Android project is simply a Gradle
project with specific dependencies.
• Requires an IDE with the Android

plugin installed.
• IntelliJ IDEA or Android Studio are

both fine.

See course website:
Reference > Getting Started > Gradle
project

7

https://student.cs.uwaterloo.ca/~cs346/1259/reference/getting-started/gradle-project/

8

Step 2: Check the directory structure
Unlike a desktop project, an Android
project should be completely usable aRer
you walk through the crea-on wizard!

Do NOT modify your star-ng project
structure.

Differences
• There are androidTest and Test

folders for unit tests (see later slides).
• AndroidManifest.xml in src/main.
• Resources under main/res folder.
• Top-level source file is MainActivity.kt.

[versions]
agp = "8.10.1"
kotlin = "2.0.0"
coreKtx = "1.15.0"
junit = "4.13.2"
junitVersion = "1.2.1"
espressoCore = "3.6.1"
lifecycleRuntimeKtx = "2.8.7"
activityCompose = "1.9.3"
composeBom = "2024.10.01"
composeNavigation = "2.8.3"
serialization = "1.7.2"

[libraries]
androidx-core-ktx = { group = "androidx.core", name = "core-ktx", version.ref = "coreKtx" }
junit = { group = "junit", name = "junit", version.ref = "junit" }
androidx-junit = { group = "androidx.test.ext", name = "junit", version.ref = "junitVersion" }
androidx-espresso-core = { group = "androidx.test.espresso", name = "espresso-core", version.ref = "espressoCore" }
androidx-lifecycle-runtime-ktx = { group = "androidx.lifecycle", name = "lifecycle-runtime-ktx", version.ref =
"lifecycleRuntimeKtx" }
androidx-activity-compose = { group = "androidx.activity", name = "activity-compose", version.ref = "activityCompose" }
androidx-compose-bom = { group = "androidx.compose", name = "compose-bom", version.ref = "composeBom" }
androidx-ui = { group = "androidx.compose.ui", name = "ui" }
androidx-ui-graphics = { group = "androidx.compose.ui", name = "ui-graphics" }
androidx-ui-tooling = { group = "androidx.compose.ui", name = "ui-tooling" }
androidx-ui-tooling-preview = { group = "androidx.compose.ui", name = "ui-tooling-preview" }
androidx-ui-test-manifest = { group = "androidx.compose.ui", name = "ui-test-manifest" }
androidx-ui-test-junit4 = { group = "androidx.compose.ui", name = "ui-test-junit4" }
androidx-material3 = { group = "androidx.compose.material3", name = "material3" }
navigation-compose = { module = "androidx.navigation:navigation-compose", version.ref = "composeNavigation" }
kotlinx-serialization-json = { module = "org.jetbrains.kotlinx:kotlinx-serialization-json", version.ref = "serialization"}

[plugins]
android-application = { id = "com.android.application", version.ref = "agp" }
jetbrains-kotlin-android = { id = "org.jetbrains.kotlin.android", version.ref = "kotlin" }
kotlin-serialization = { id = "org.jetbrains.kotlin.plugin.serialization", version.ref = "kotlin" }
compose-compiler = { id = "org.jetbrains.kotlin.plugin.compose", version.ref = "kotlin" }

Step 3: Dependencies

• You will have a large
number of starting
dependencies!

• Add more as needed
through the version catalog.

9

Android Device Manager

Tools > Android > Android Device Manager
10

Architecture
How is Android designed?

11

This is the Android operating system stack.

This is a layered architecture: hardware at the
bottom, user applications at the top.

• System Applications: Applications that are
bundled with the OS or written (by us). They
leverage the next layer & cannot communicate
directly with anything further down the stack.

• Java API Framework: Google repurposed some
Java libraries to provide services to the OS.
Recently, portions have been rewritten in Kotlin.

• Native C++ Libraries: high-performance libraries
that the higher-level frameworks leverage e.g.,
graphics, media.

• HAL/Linux: Lowest level drivers, hardware access.

12

https://developer.android.com/guide/platform

Application Design

A typical Android application contains multiple components, including
some combination of:

Component Description
Activities Screens, each with its own state and lifecycle
Fragments Portions of a screen that can be managed separately
Services Provides long-running operations in the background
Content Providers Shares data with other applications.
Broadcast Receivers Listens for system events e.g., phone call, airplane mode

13

Key takeaway: your
application needs to support
being paused or stopped
(typically by saving data for
later).

14

AcAvity Details
• Applications consist of one or more running activities, each one

corresponding to a screen.
• You can think of an activity as a visible screen with state information.
• An activity can be one of the following running states:

• The activity in the foreground, typically the one that user is interacting with,
i.e., running.

• An activity that has lost focus but can still be seen is visible and active.
• An activity that is completely hidden, or minimized is stopped. It retains its

state (it’s basically paused) BUT the OS may choose to terminate it to free up
resources.

• The OS can choose to destroy an application to free up resources.

15

https://developer.android.com/reference/android/app/Activity

Activity Lifecycle
There are three key loops that these phases attempt to capture:

• The entire lifetime of an activity happens between the first call to
onCreate(Bundle) through to a single final call to onDestroy(). Setup is done
in onCreate(), and all remaining resources are released by onDestroy().

• The visible lifetime of an activity happens between a call to onStart() until a
corresponding call to onStop(). During this time the user can see the activity
on-screen, though it may not be in the foreground.

• The foreground lifetime of an activity happens between a call to onResume()
until a corresponding call to onPause(). During this time the activity is in
visible, active and interacting with the user. An activity can frequently go
between the resumed and paused states e.g. when the device goes to sleep.

16

Warning: Data loss on rotation

• AcDviDes can be restarted when
• The OS decides that it needs to reclaim resources (uncommon),
• You rotate the device (common!)

• RestarDng acDviDes means relaunching and losing data.
• How do you avoid this?

• Save and restore data manually
• Override the onPause() and onResume() methods and manage a Bundle of data.

• Use a ViewModel as a base class for your custom ViewModel.
• Android will automaKcally save and restore VM data!!
• hOps://developer.android.com/topic/libraries/architecture/viewmodel

17

⚠

https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/topic/libraries/architecture/viewmodel

Application Structure
What does it look like again?

18

Project Structure

Your application structure should look the same
as discussed in the Architecture lecture, with
data/, domain/ and presentation/ layers.

Differences compared to a desktop application:
• Your entry point is the MainActivity class.
• Android stores resources in the res folder

structure. There is an API to load them.
• Manifest file describes your project structure.

19

MainAcAvity

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 enableEdgeToEdge()

 val database= getRoomDatabase(this)
 val taskModel = TaskModel(database.taskDao())
 val viewModel = TaskViewModel(taskModel)

 setContent {
 MMTheme {
 TaskView(viewModel) !// top-level View/Composable
 }
 }
 }
}

20

MainActivity is a class that
extends ComponentActivity.

Activities have built-in methods
that mirror their lifecycle:

onCreate(), onStart(), onStop()
and so on.

The onCreate() method is the
first method that is called when
the MainActivity is instantiated

and serves as the entry point for
your application.

MainActivity.kt

GitHub: demos > mm-android

Application Manifest

Every Android project has a single `AndroidManifest.xml` file
This is an XML file that describes your applicaDon structure.
• It lists components and properDes required to compile, install and run

your applicaDon. e.g.,
• Iden-fies the `MainAc-vity` which launches on startup i.e., `main` method.
• Iden-fies the name and icon to use for your applica-on.
• Loca-on of resources to include.
• Permissions that the applica-on requires

• See ApplicaDon Manifest Overview

You can probably
ignore this file UNLESS
you need permissions
(file system, network)

21

https://developer.android.com/guide/topics/manifest/manifest-intro

22

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">

 <application
 android:allowBackup="true"
 android:dataExtractionRules="@xml/data_extraction_rules"
 android:fullBackupContent="@xml/backup_rules"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.Mmandroid"
 tools:targetApi="31">
 <activity
 android:name="ca.uwaterloo.mm.MainActivity"
 android:exported="true"
 android:label="@string/app_name"
 android:theme="@style/Theme.Mmandroid">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

AndroidManifest.xml

GitHub: demos > mm-android

Activity: View relationship
We use View classes for screens. How do they relate to AcRviRes?

1. Each View is an AcRvity (early-Android).
• Every screen is represented by a corresponding AcGvity.
• You would use an Intent (message to the OS) to swap between them.
• This is not recommended! It’s very slow. ❌

2. You fewer AcRviRes, each is configurable using Fragments (old Android)
• You have few AcGviGes, but each one is composed of pieces called Fragments.
• You write logic to load the AcGvity, then load suitable fragments.
• Not recommended! Faster, but sGll generally very slow. ❌

3. One AcRvity, and you just choose your View to show (new Android)
• Use your MainAcGvity as a container. Each view is a single top-level composable!
• NavigaGon code/libraries just chooses which View to launch. ✔

23

https://developer.android.com/reference/android/content/Intent

24

@Composable
fun TaskView(viewModel: TaskViewModel) {
 val items by viewModel.getAll().collectAsState(initial = emptyList())

 Scaffold(
 topBar = {
 Toolbar(
 addHandler = { viewModel.showAddDialog = true },
 editHandler = { viewModel.showEditDialog = true },
 deleteHandler = {
 val task = viewModel.selectedTask ?: return@Toolbar
 viewModel.delete(task)
 viewModel.selectedTask = null
 }
)
 },
 bottomBar = { },
) { padding ->
 Box(
 modifier = Modifier.fillMaxSize().padding(padding)
) {
 if (items.isEmpty() && !viewModel.showAddDialog && !viewModel.showEditDialog) {
 Text(
 "No tasks available. Add a task using the + button.",
 modifier = Modifier.align(Alignment.Center).padding(16.dp)
)
 } else {
 // …
 }

presentation/
 TaskView.kt

The presentation layer
communicates with the
domain layer. i.e.
TaskViewModel and
TaskEntity classes.

None of this is Android-
specific; it’s straight
Compose code.

GitHub: demos > mm-android

25

!/*
 * Android ViewModel
 * This class holds state for our Application Composable function.
 * The built-in ViewModel survives screen rotation automatically.
 !*/

class TaskViewModel(val taskModel: TaskModel) : ViewModel() {
 var selectedTask by mutableStateOf<Task?>(null)
 var showAddDialog by mutableStateOf(false)
 var showEditDialog by mutableStateOf(false)

 fun getAll(): Flow<List<Task!>> {
 return taskModel.getAll()
 }

 fun getById(id: Int): Task {
 return runBlocking {
 taskModel.getById(id)
 }
 }

fun deleteAll() {
 viewModelScope.launch {
 taskModel.deleteAll()
 }
}

!// …

domain/
 TaskViewModel.kt

The domain layer
communicates with the
data layer.

None of this code is
Android specific.

We’ll review the
applicaUon in more detail
in the database lecture.

GitHub: demos > mm-android

Android-Specific Composables
What Compose functionality is specific to mobile development?

26

Composable: Scaffold

@Composable
fun ScaffoldDemo() {
 val materialBlue700= Color(0xFF1976D2)
 val scaffoldState = rememberScaffoldState(rememberDrawerState(DrawerValue.Open))
 Scaffold(
 scaffoldState = scaffoldState,
 topBar = {
 TopAppBar(title = {Text(“TopAppBar")}, backgroundColor = materialBlue700)
 },
 floatingActionButtonPosition = FabPosition.End,
 floatingActionButton = { FloatingActionButton(onClick = {}){Text(“X”)} },
 drawerContent = { Text(text = "drawerContent") },
 content = { Text("BodyContent") },
 bottomBar = {
 BottomAppBar(backgroundColor = materialBlue700) {Text(“BottomAppBar”)}
 }
)
}

27

Composable: Image
@Composable
fun ImageResourceDemo() {
 val image: Painter = painterResource(id = R.drawable.composelogo)
 Image(painter = image,contentDescription = "")

}

28

Composable: Floating Action Buttons

@Composable
fun ExtendedFloatingActionButtonDemo() {
 ExtendedFloatingActionButton(
 icon = { Icon(Icons.Filled.Favorite,"") },
 text = { Text("FloatingActionButton") },
 onClick = { /*do something*/ },
 elevation = FloatingActionButtonDefaults.elevation(8.dp)
)

}

@Composable
fun FloatingActionButtonDemo() {
 FloatingActionButton(onClick = { /*do something*/}) {
 Text("FloatingActionButton")
 }

}

29

Composable: Card
@Composable
fun CardDemo() {
 Card(
 modifier = Modifier.fillMaxWidth().padding(15.dp).clickable{ },
 elevation = 10.dp
) {
 Column(modifier = Modifier.padding(15.dp)) {
 Text("Jetpack Compose Playground")
 Text("Now you are in the Card section")
 }

 }
}

30

Finding More Composables

31

All of the other composables work as well! The amazing thing about
Compose is that you can copy/paste composables between platforms.

List of Composables
https://developer.android.com/reference/kotlin/androidx/compos
e/material/package-summary

Sample Code
https://foso.github.io/Jetpack-Compose-Playground/
https://developer.android.com/jetpack/compose/components

https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://foso.github.io/Jetpack-Compose-Playground/
https://foso.github.io/Jetpack-Compose-Playground/
https://foso.github.io/Jetpack-Compose-Playground/
https://foso.github.io/Jetpack-Compose-Playground/
https://foso.github.io/Jetpack-Compose-Playground/
https://developer.android.com/jetpack/compose/components

Managing State
Android-specific issues.

32

What is unique about Android?

The OS has control over applications at a deep level.
• Application components only communicate through the OS via intents.
• The OS can launch and control specific application components.

• e.g., Your application can use a Photo Capture screen from a different application.

• The OS was designed around devices with very limited resources.
• Rotating the device will cause the UI to be reloaded.

• Pre-compose? The UI was completely reloaded, and UI state is lost.
• Compose? This forces recomposition.

• The OS may terminate your application if it needs resources.
• You need to handle this as well, otherwise you will lose data!

⚠

⚠

33

Managing Compose State

@Composable
fun ChatBubble(
 message: Message
) {
 var showDetails by rememberSaveable { mutableStateOf(false) }

ClickableText(
 text = AnnotatedString(message.content),
 onClick = { showDetails = !showDetails }
)

if (showDetails) {
 Text(message.timestamp)
 }
}

This keyword will
retain state

across acRvity
and process
recreaRon.

34

Caveats

rememberSaveable stores data in a Bundle
• this is a special Android specific data structure to hold values.
• It only works for primi-ves!

To store anything more complex, you may need addi-onal APIs.
• e.g., making a class Parcelable.
• See Ways to store state

35

https://developer.android.com/develop/ui/compose/state

Navigation
Android-specific navigation.

36

Jetpack NavigaAon Concepts

• A naviga&on graph describes all of the possible screen desDnaDons
and connecDons between then.
• A des&na&on is a node that you can navigate to. This can be a

composable (screen), or a dialog, or a different navigaDon graph (for
complex user interfaces).
• A route idenDfies a desDnaDon and defines how to navigate to it.

37

Jetpack NavigaAon Library

The NavigaRon library represents the user’s path as a stack of desRnaRons.
You can use this to move forward/backwards through navigaRon history.
Core classes:
• NavController: provides APIs for core funcRonality.
• NavHost is a composable that displays the contents for the current

desRnaRon (determined by the navigaRon graph).
• NavGraph describes all possible desRnaRons and the connecRons between

them.

38

https://developer.android.com/guide/navigation

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 MaterialTheme {
 val navController = rememberNavController()
 NavHost(
 navController = navController,
 startDestination = ScreenA
) {
 composable<ScreenA> {
 ScreenAView(navController)
 }
 composable<ScreenB> {
 val args = it.toRoute<ScreenB>()
 ScreenBView(navController, args)
 }
 composable<ScreenC> {
 val args = it.toRoute<ScreenC>()
 ScreenCView(navController, args)
 }
 }
 }
 }
 }
}

See: GitHub > sample-code > android-navigaUon

It’s the almost
the same as the
desktop sample!

39

Interactivity
Handling screen events, key presses.

40

Interaction Styles

What types of interaction do we need to support on a mobile device?

1. Multi-touch for primary input.
• Tapping on widgets to activate e.g. touch a text widget to enter text; touch a

button to activate it.
• Dragging and other gestures.

2. Keyboard input as secondary.
• Soft-keyboard (on-screen).

41

MulA-touch Widgets

This is exactly the same as desktop. You override the handler func-ons for the
widgets, providing it with a lambda func-on that is executed when the event fires.

 FloatingActionButton(onClick = { !/* something !*/ }) {
 Text("FloatingActionButton")
 }

42

Touch Gestures

43

You can apply gesture modifiers to make the composable listen to gestures.

var log by remember { mutableStateOf("") }
Column {

Box(
Modifier

.size(100.dp)

.background(Color.Red)

.pointerInput(Unit) {
detectTapGestures { log = "Tap!" }
detectDragGestures { _, _ -> log = "Dragging" }

}
)

}

https://developer.android.com/jetpack/compose/touch-input/pointer-input/understand-gestures

Key Gestures

44

@Composable
fun SimpleFilledTextFieldSample() {

var text by remember { mutableStateOf("Hello") }

TextField(
value = text,
onValueChange = { text = it },
label = { Text("Label") }

)
}

@Composable
fun SimpleOutlinedTextFieldSample() {

var text by remember { mutableStateOf("") }

OutlinedTextField(
value = text,
onValueChange = { text = it },
label = { Text("Label") }

)
}

Tes@ng
What’s different about testing on Android?

45

What’s unique?

Desktop testing: Development and deployment systems are the same.
Android testing: development and deployment hardware are different.
• src/test – local unit tests that run on your computer. Android not

required. Should be used for generic/simple unit tests.
• src/androidTest – run on an Android device (or VM) using that

hardware. Can test Android specific APIs and functionality.

You can use both folders but be aware that the tests execute in
different environments.

46

Reference

• Google. 2025. Android Developer Portal.
• Google. 2025. Compose Lifecycle.
• Google. 2025. Guide to App Architecture.
• Google. 2025. State and Jetpack Compose.

47

https://developer.android.com/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-lifecycle.html
https://developer.android.com/topic/architecture
https://developer.android.com/develop/ui/compose/state

