
Concurrency
CS 346 Application

Development

Synchronous execution is “normal”

In practice, we typically program using a synchronous execution model, where we expect the CPU
to wait for one instruction to complete before proceeding to the next. This works fine for simple
programs, but it doesn’t scale at all.

• e.g., imagine a web server that had to finish one query before handling the next one... not useful!

2

fun calculate(): Int {
 val r1 = square(2)
 val r2 = square(5)
 val r3 = square(7)
 return r1 + r2 + r3
}

fun square(n: Int): Int = n * n à 4
fun square(n: Int): Int = n * n à 25
fun square(n: Int): Int = n * n à 49

Each call to the square() function needs to return it’s result before the next invocation. This is
synchronous, since operations needs to be performed in-order.

We want “asynchronous execution”

We want an asynchronous execution model where multiple tasks can be handled concurrently.

e.g., an application might need to make 3-4 database requests. You wouldn’t want to have to wait
for the first to complete before proceeding to the second (which would be synchronous). Ideally,
you launch them all and they return as they complete.

3

@Composable
fun loadCustomerRecord(id: customerID, transactionsTable: Table, customerTable: Table) {
 val customer = customerTable.fetch(id) // very fast operation
 val transactions = transactionsTable.fetch(customer) // very slow operation
 Column {
 Row {
 CustomerRow(customer)
 items(transactions) { item ->
 TransactionRow(item)
 }
 }
 }
}

If `customer` data
returns first, we want to
display it immediately

and not have to wait for
`transactions` to return.

Asynchronous execution is everywhere
• Your computer already does this!
• You probably have multiple applications running, each

with many smaller tasks.
• The operating system schedules time for each task, and

alternates between them.
• Often these tasks need to share resources, which the OS also

needs to coordinate e.g., file, screen access.
• A single application might “simultaneously”:

• Respond to a mouse-click to resize a window,
• Draw the results to the screen, while
• Reading data from a database, and
• Fetching more data from the web.

• We need a programming model that supports
asynchronous execution.

4

My computer, as I’m creating this slide, with
757 running processes. I don’t know what
most of these are…

Concept: Concurrency

5

Concurrency is a general term that is used to
mean that multiple tasks are being worked on
simultaneously.

This does not suggest that tasks are being
executed at the same time, only that we can
alternate between them easily.

Parallelism means executing or performing
multiple tasks simultaneously..

Parallel computations can use multi-core
hardware effectively, often making them
more efficient (i.e. one task per core).

Threads
It always comes back to OS threads…

6

Concept: Threads
• Each program that you run is a process that is

managed by the operating system.
• A thread is a context within which the CPU can

execute instructions.
• Each program has one `main` thread that is created

when your program launches.

• Instructions typically run on the `main` thread.
• If your program requires additional threads, you (the

developer) need to write code to create and manage
them.

• Developer created threads are referred to as worker-
threads (or sometimes background threads since
they are doing background processing).

7

All instructions in a program are
processed by one or more threads.

Most programs only have one
thread.

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/
https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

Threads for Background Processing
• Creating additional threads provides

significant benefits but adds complexity.
• We can split computation across threads

(one primary thread, and one or more
background threads).
• e.g. one thread can wait for the blocking

operation to complete, while the other
threads continue processing.

• This has the potential to increase
performance, if we can split up work
• i.e. concurrency and/or parallelism

8

Make sure that threads don’t compete for resources!

Managing a Thread

9

fun thread(
 start: Boolean = true,
 isDaemon: Boolean = false,
 contextClassLoader: ClassLoader? = null,
 name: String? = null,
 priority: Int = -1,
 block: () -> Unit
): Thread

thread(start = true) { // code to run in the lambda
 println("${Thread.currentThread()} has run.")
}

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/thread.html

Should we use threads?
• A worker thread can allow us to execute work in parallel. This is huge.
• However, there are disadvantages.

• Threads are “expensive” to start/stop and consume lots of memory.
• Launching or context switching between OS threads takes significant time.
• Worker threads may not always available in the number we require.

• A blocking operation prevents any further work on the thread.
• e.g., while you want for a DB call to return, the thread is “hung” and unusable.

• Threads are a poor, low-level abstraction.
• We have limited ability to control when/how the OS runs threads, so we risk race

conditions if we are not careful.
• Your program execution model can be difficult to follow! You can’t just read code

sequentially to understand the program’s logic.

10

Coroutines
How to manage concurrency in Kotlin.

11

What is a coroutine?

• Kotlin’s approach to working with asynchronous code is to use coroutines.
• A coroutine is a suspendable computation: a section of code that can suspend

execution at some point and then resume later.
• Suspending a block of code allows the OS to execute something else while waiting.

• This abstraction allows us to describe how our code should be executed, without
worry about the explicit allocation of work to threads.

• We achieve concurrency, plus parallelism under certain conditions.

12

Coroutines provide a greatly improved abstraction:
• They are very lightweight and require far fewer resources than a thread.
• Coroutines can suspend without blocking resources i.e. if coroutine is

suspended on a thread, that thread can still be used for something else.
• A coroutine is executed by a thread, but it is not tied to that specific thread. It

may suspend its execution in one thread and resume in a different one.

13
Aigner et al. Kotlin in Action (2024).

Importing Coroutine Libraries
Kotlin provides the kotlinx.coroutines library with high-level coroutine-enabled primitives. You will
need to add the dependency to your build.gradle.kts file and then import the library.

// build.gradle.kts
implementation(“org.jetbrains.kotlinx:kotlinx-coroutines-core:1.10.2”)

// code
import kotlinx.coroutines.*

14

https://kotlinlang.org/docs/coroutines-guide.html

https://github.com/Kotlin/kotlinx.coroutines
https://kotlinlang.org/docs/coroutines-guide.html
https://kotlinlang.org/docs/coroutines-guide.html
https://kotlinlang.org/docs/coroutines-guide.html
https://kotlinlang.org/docs/coroutines-guide.html
https://kotlinlang.org/docs/coroutines-guide.html

Structure of a coroutine

To run something asynchronously, you need two things to be present:
1. A coroutine, which is a “runner” for asynchronous code.

• We’ll use coroutine builder functions to create coroutines.
• There are different coroutine builders that produce coroutines with different

behaviours.

2. A block of code to run asynchronously.
• Coroutines
• “Special functions”

Basically, you setup a coroutine with some code to run, and it will execute
the code based on how that specific coroutine works.

15

1. Creating a coroutine

A coroutine is generated by a coroutine-builder.
The coroutine provides a context in which
asynchronous code can run.
runBlocking is a special coroutine builder that
bridges the world of regular functions to the
asynchronous code that will run.
• It creates a coroutine, which executes the code

passed to it.
• This program only proceeds past the runBlocking

call when all the code in the lambda has returned.
• runBlocking is necessary because you cannot

mix synchronous and asynchronous code!

16

fun main() {
 runBlocking {
 // asynchronous functions
 doSomething()
 doSomethingElse()
 }
 regularCode()
}

Suspending functions are regular functions that can
be suspended by a coroutine.
• They serve as ”suspension points” for the

coroutine, where it can suspend execution.
• A function that is suspended frees up the thread

for other uses.
• A suspending function looks like a regular function

with the “suspending” keyword.

GitLab:
sample-code > coroutines-lecture > coroutinebuilders

2. Providing asynchronous code

17

fun main() {
 runBlocking {
 // suspending functions
 doSomething()
 doSomethingElse()
 }
}

suspend fun doSomething() {
 delay(1000.milliseconds)
 println("doSomething is done")
}

suspend fun doSomethingElse() {
 delay(1000.milliseconds)
 println("doSomethingElse is done")
}

https://git.uwaterloo.ca/cs346/samples/concurrency-example
https://git.uwaterloo.ca/cs346/samples/concurrency-example
https://git.uwaterloo.ca/cs346/samples/concurrency-example
https://git.uwaterloo.ca/cs346/samples/concurrency-example
https://git.uwaterloo.ca/cs346/samples/concurrency-example
https://git.uwaterloo.ca/cs346/samples/concurrency-example
https://git.uwaterloo.ca/cs346/samples/concurrency-example

Issues with Regular Functions

18

Regular functions block their thread when waiting.
• In this example, the program “hangs” while waiting for each function call to return.
• This code can run in a coroutine but cannot be managed and blocks the thread.

fun login(credentials: Credentials): UserID // blocking function, takes time
fun loadUserData(userID: UserID): UserData // blocking function, takes time
fun showData(data: UserData) // #1

fun showUserInfo(credentials: Credentials) {
 val userID = login(credentials) // blocking call
 val userData = loadUserData(userID) // blocking call
 showData(userData)
}

Each function waits for data to
return before proceeding.

Suspending Functions

19

Suspending functions are regular functions that can be suspended by a coroutine.
• They act as ”suspension points” for the coroutine.

suspend fun login(credentials: Credentials): UserID // suspending, so no blocking
suspend fun loadUserData(userID: UserID): UserData // suspending, so no blocking
fun showData(data: UserData)

suspend fun showUserInfo(credentials: Credentials) {
 val userID = login(credentials) // non-blocking
 val userData = loadUserData(userID) // non-blocking
 showData(userData)
}

This changes the execution
to be asynchronous. The
OS can perform other
actions while our functions
suspend.

Coroutine Builders
Creating and executing coroutines.

20

Coroutine Builders

• runBlocking
• bridges normal and asynchronous code.
• blocks its thread until its job is complete.

• launch
• executes code asynchronously.
• can only be run from an existing coroutine.
• returns a “job” that can be used to track progress.

• async
• executes code asynchronously.
• can only be run from an existing coroutine.
• Returns a “deferred” object, that you can wait on for a return value.

21

launch

22

fun main() {
 log(“The program launches")
 GlobalScope.launch {
 log("The first coroutine starts and is ready to be suspended")
 delay(500.milliseconds)
 log("The first coroutine is resumed")
 }
 GlobalScope.launch {
 log("The second coroutine starts and is ready to be suspended")
 delay(500.milliseconds)
 log("The second coroutine is resumed")
 }
 log(“The program completes")
}

// 0 [main] The program launches
// 43 [main] The program completes

Where is the output from the
second and third coroutines?

https://pl.kotl.in/SE0hz4S4h

“Fire and forget” coroutine
builder since it doesn’t

return a value.

https://pl.kotl.in/SE0hz4S4h
https://pl.kotl.in/SE0hz4S4h
https://pl.kotl.in/SE0hz4S4h

fun main() {
 log("The program launches")
 runBlocking {
 log("runBlocking launches")
 launch {
 log("The first coroutine starts and is ready to be suspended")
 delay(500.milliseconds)
 log("The first coroutine is resumed")
 }
 launch {
 log("The second coroutine starts and is ready to be suspended")
 delay(500.milliseconds)
 log("The second coroutine is resumed")
 }
 log("runBlocking pauses")
 }
 log("The program completes")

}

// 0 [main] The program launches
// 48 [main @coroutine#1] runBlocking launches
// 50 [main @coroutine#1] runBlocking pauses
// 51 [main @coroutine#2] The first coroutine starts and is ready to be suspended
// 58 [main @coroutine#3] The second coroutine starts and is ready to be suspended
// 562 [main @coroutine#2] The first coroutine is resumed
// 562 [main @coroutine#3] The second coroutine is resumed
// 562 [main] The program completes

runBlocking wraps everything in a parent
coroutine, which will pause and wait for its

children to complete before proceeding.

23https://pl.kotl.in/w_99PwHPE

https://pl.kotl.in/w_99PwHPE
https://pl.kotl.in/w_99PwHPE
https://pl.kotl.in/w_99PwHPE

Managing a job

24

A launch coroutine builder returns a Job object that is a handle to the launched
coroutine and can be used to explicitly wait for its completion. For example, you
can wait for completion of the child coroutine and then print "Done" string:

val job = launch { // launch a new coroutine and keep a reference
 delay(1000L)
 println("World!")

}
println("Hello")
job.join() // wait until child coroutine completes
println("Done")

https://pl.kotl.in/t3nXouzWf

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://pl.kotl.in/t3nXouzWf
https://pl.kotl.in/t3nXouzWf
https://pl.kotl.in/t3nXouzWf

Cancelling a job

25

val job = launch {
 repeat(1000) { i ->
 println("job: I'm sleeping $i ...")
 delay(500L)
 }

}
delay(1300L) // delay a bit
println("main: I'm tired of waiting!")
job.cancel() // cancels the job
job.join() // waits for job's completion
println("main: Now I can quit.”)

// output
job: I'm sleeping 0 ...
job: I'm sleeping 1 ...
job: I'm sleeping 2 ...
main: I'm tired of waiting!
main: Now I can quit.

https://pl.kotl.in/aCPfkC5Hm

https://pl.kotl.in/aCPfkC5Hm
https://pl.kotl.in/aCPfkC5Hm
https://pl.kotl.in/aCPfkC5Hm

async (1/2)

• Conceptually, async is just like launch. It starts a separate coroutine
which is a light-weight thread that works concurrently with all the
other coroutines. The differences:
• async returns a Deferred — a lightweight non-blocking future that represents

a promise to provide a result later. You can use .await() on a deferred value to
get its eventual result, but Deferred is also a Job, so you can cancel it if
needed.

• async is useful when you want to run multiple independent tasks and
have then return when they are ready.

26

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/index.html

async (2/2)

27

suspend fun doSomethingUsefulOne(): Int {
 delay(1000L) // pretend we are doing something useful here
 return 13

}

suspend fun doSomethingUsefulTwo(): Int {
 delay(1000L) // pretend we are doing something useful here, too
 return 29

}

val time = measureTimeMillis {
 val one = async { doSomethingUsefulOne() }
 val two = async { doSomethingUsefulTwo() }
 println("The answer is ${one.await() + two.await()}")

}
println("Completed in $time ms")

// The answer is 42
// Completed in 1017 ms

https://pl.kotl.in/OXdh6hEup

https://pl.kotl.in/OXdh6hEup

Debugging Tip!

Add this line to the `VM options` section of your Run
Configuration in IntelliJ IDEA, to include
coroutine debug information in the output.

-Dkotlinx.coroutines.debug

> Task :LaunchKt.main()
35 [main @coroutine#1] The first, parent, coroutine
starts
41 [main @coroutine#1] The first coroutine has
launched two more coroutines
42 [main @coroutine#2] The second coroutine starts
and is ready to be suspended
45 [main @coroutine#3] The third coroutine can run in
the meantime

28

Dispatchers
Specifying which thread your coroutine will use.

29

Dispatchers

30

When you create a coroutine, you can optionally designates a coroutine dispatcher, which
determines which thread will be used.
• If you don’t specify it, the coroutine will inherit the parent’s dispatcher.
• Why use this? You shouldn’t perform blocking IO operations on the default thread pool!

launch (Dispatchers.Default) {
 // do some work using that dispatcher
}

Options include:
• Dispatchers.Default - Common pool, meant for computation (threads = # cores)
• Dispatchers.IO - Common pool, meant for blocking IO operations (threads = 64+)
• Dispatchers.Main - User Interface thread (threads = 1)

Mixing dispatchers

31

For most small computations, it won’t matter which dispatcher use you.

When does it matter?
• Blocking IO operations should be done on Dispatchers.IO (pool of threads).
• User interface operations should be done on Dispatchers.Main (UI thread).

runBlocking(Dispatchers.Default) {
 launch (Dispatchers.IO) {
 // fetch from a database, which blocks normally
 withContext (Dispatchers.Main) {
 // update the UI directly within the same coroutine
 }
 }
}

withContext

32

When a coroutine builder is used without parameters, it inherits the context (and
thus dispatcher) from the parent coroutine.

runBlocking(Dispatchers.Default) {
 launch { // will inherit Dispatchers.Default from runBlocking
 delay (5000.milliseconds)
 }
}

The withContext() function is also commonly used to execute a suspending function
using a particular dispatcher.

withContext(Dispatchers.IO) { // do something here }

Structured Concurrency
Providing safety with coroutine scope.

33

Structured Concurrency
In a real application, you will be launching a lot of coroutines.
Structured concurrency is the ability to track and manage the hierarchy of
coroutines in your application. This is useful to manage related coroutines.
• e.g., imagine that when a user switches screens, you launch multiple coroutines

to load data from different sources. If they navigate back and cancel the screen
load, you should be able to cancel the coroutines together.

Structured concurrency ensures that coroutines are never lost and do not leak.
• An outer scope cannot complete until all its children coroutines complete.
• A child coroutine throwing an exception will cause other coroutines in the same

scope to stop executing as well.

34

Coroutine Scope
Each coroutine belongs to a coroutine scope. When you create
a new coroutine e.g., launch or async, it will automatically
become a child of that coroutine.

fun main() {
 runBlocking { // 1
 launch { // 2
 delay(1.seconds)
 launch { // 4
 delay(250.milliseconds)
 log("Grandchild done")”
 }
 log("Child 1 done!")
 }
 launch { // 3
 delay(500.milliseconds)
 log("Child 2 done!")
 }
 log("Parent done!")
 }
} 35

Output

> Task :CoroutineScopeKt.main()
40 [main] Parent done!
555 [main] Child 2 done!
1055 [main] Child 1 done!
1308 [main] Grandchild done

runBlocking won’t complete until its
children are done, thanks to structured
concurrency.

Coroutine Scope Builder

36

Coroutine builders create scope, but you can also create it
manually to group coroutines.

// Executes doWorld followed by "Done"
fun main() = runBlocking {
 doWorld()
 println("Done")

}

// Concurrently executes both sections
suspend fun doWorld() = coroutineScope {
 launch {
 delay(2000L)
 println("World 2")
 }
 launch {
 delay(1000L)
 println("World 1")
 }
 println("Hello")

}

Output

Hello
World 1
World 2
Done

A coroutine scope can be defined
inside of any suspending function.
Here we use it to launch 2 concurrent
coroutines.

NOTE the ordering!

https://pl.kotl.in/PIZRdoh02

https://pl.kotl.in/PIZRdoh02
https://pl.kotl.in/PIZRdoh02
https://pl.kotl.in/PIZRdoh02

Scope provides safety

37

suspend fun onMessage(msg: Message) = coroutineScope {
 val ids: List<Int> = msg.getIds()

 ids.forEach { id ->
 // launch is called on the coroutineScope.
 launch { restService.post(id) }
 }
}

We’ve added a top-level coroutine scope.

If anything crashes, then ALL of the
coroutines are cancelled.See “The reason to avoid GlobalScope”.

https://elizarov.medium.com/the-reason-to-avoid-globalscope-835337445abc
https://elizarov.medium.com/the-reason-to-avoid-globalscope-835337445abc
https://elizarov.medium.com/the-reason-to-avoid-globalscope-835337445abc

Scope allows cancellation

When you cancel a coroutine, it’s children are also cancelled.

fun main() = runBlocking {
 val job = launch {
 launch {
 launch {
 launch {
 log("I'm started")
 delay(500.milliseconds)
 log("I'm done!")
 }
 }
 }
 }
 delay(200.milliseconds)
 job.cancel()
}

38

Kotlin Flows
Leveraging coroutines to support a new programming model!

39

Streams of values

A suspending function can execute code
asynchronously i.e. it can suspend/resume.
• However, a suspending function otherwise

behaves like any other function.
• Return values are only delivered after the

function completes.

In this example, we build a list of values and then
return it once the function completes.
• We cannot deliver the first value early but

must wait for the function to be “done”.
• What if we wanted to deliver values as they

were produced instead?

40

suspend fun createValues(): List<Int> {
 return buildList {
 add(1)
 delay(1.seconds)
 add(2)
 delay(1.seconds)
 add(3)
 delay(1.seconds)
 }
}

fun main() = runBlocking {
 val list = createValues()
 list.forEach {
 log(it)
 }
}

// output
// 3099 [main @coroutine#1] 1
// 3107 [main @coroutine#1] 2
// 3107 [main @coroutine#1] 3

Kotlin Flows
Reactive programming is a declarative programming paradigm that
is based on the idea of asynchronous event processing and data
streams.

• As a model, it supports passing processing data asynchronously and
delivering it over time.

Kotlin flows are a coroutine-based abstraction that supports
reactive programming.

• Think of it as a “pipeline” architecture with a producer and consumer.
• One function emits values, and another function consumes them.

• Like RxJava, but for Kotlin. Leverages coroutines nicely.

41

Example: Flow

fun createValues(): Flow<Int> {
 return flow {
 emit(1)
 delay(1000.milliseconds)
 emit(2)
 delay(1000.milliseconds)
 emit(3)
 delay(1000.milliseconds)
 }
}

fun main() = runBlocking {
 val myFlowOfValues = createValues()
 myFlowOfValues.collect { log(it) }
}

42

// output
// published as they are emitted
29 [main] 1
1040 [main] 2
2045 [main] 3

Keywords
• “flow” is a coroutine builder that

creates a Flow coroutine.
• ”emit” places items into the Flow.
• “collect” on the returned value.

Types of Flows

• Cold flows represent data streams that only start emitting items
when the items will be consumed and processed by a collector. If
“nobody” is listening, them values won’t be emitted.
• Hot flows produce items independently of whether anyone is

collecting them i.e., they broadcast “blindly”, and items will be “lost”
if no one is listening.

43

Cold Flows

• The flow keyword creates a cold flow emitter.
• Normally you define an associated collector for each flow.

• The collector captures emitted values using the collect function.
• The lambda that you pass to the collector is executed every time a

value is emitted.
• It only starts emitting when the collector starts collecting.

44

45

val letters = flow {
 log("Emitting A!")
 emit("A")
 delay(200.milliseconds)
 log("Emitting B!")
 emit("B")
}

fun main() = runBlocking {
 letters.collect {
 log("Collecting $it")
 delay(500.milliseconds)
 }
}

// output
18 [main] Emitting A!
25 [main] Collecting A
741 [main] Emitting B!
742 [main] Collecting B

Cold flow example from Kotlin in Action, 2nd Ed.
The flow won’t start until the collector starts to collect the emitted values.

Infinite Flow
Flows can be “infinite”, meaning that they won’t terminate.
• In this case it’s a cold flow, so if you stopped collecting it

would stop emitting.

val counterFlow = flow {
 var x = 0
 while (true) {
 emit(x++)
 delay(200.milliseconds)
 }
}

launch {
 log("Starting infinite flow")
 counterFlow.collect {
 log("> collected $it")
 }
}

46

// output
31 [main] > collected 0
236 [main] > collected 1
438 [main] > collected 2
643 [main] > collected 3
845 [main] > collected 4
1046 [main] > collected 5
1251 [main] > collected 6

Multiple Collectors
If you attempt to collect a flow multiple times, the flow will be
executed for every collection e.g., the second collection suspends
until the first completes.

fun main() = runBlocking {
 letters.collect {
 log("(1) Collecting $it") // 1
 delay(500.milliseconds)
 }
 letters.collect {
 log("(2) Collecting $it") // 2
 delay(500.milliseconds)
 }
}

val letters = flow {
 log("Emitting A!")
 emit("A")
 delay(200.milliseconds)
 log("Emitting B!")
 emit("B")
}

} 47

// output
0 [main] Emitting A!
8 [main] (1) Collecting A
720 [main] Emitting B!
720 [main] (1) Collecting B
1229 [main] Emitting A!
1230 [main] (2) Collecting A
1937 [main] Emitting B!
1937 [main] (2) Collecting B

1

2

Cancelling Collectors
If you cancel the coroutine of the collector, you stop the collection of the flow at the next
cancellation point.

fun main() = runBlocking {
 val collector = launch {
 counterFlow.collect {
 println(it)
 }
 }
 delay(5.seconds)
 collector.cancel()
}

val counterFlow = flow {
 var x = 0
 while (true) {
 emit(x++)
 delay(200.milliseconds)
 }
}

}
48

// output halts at 24
0
1
2
3
…
24

Hot Flows

Hot flows share emitted items across multiple collectors, called subscribers.
• They are suitable when you are emitting events or state changes in your

system that happen independently or aren’t tied to a specific collector.
• Emissions happen even with no subscribers present

Kotlin coroutines come with two hot flow implementations out of the box:
• Shared flows, which are used for broadcasting values, and
• State flows, for the special case of communicating state

49

A shared flow broadcasts values

// output

554 [main] Emitting 0!
1061 [main] Emitting 0!
1562 [main] Emitting 8!

2066 [main] Emitting 10!
2571 [main] Emitting 10!

50

Shared flows operate in a broadcast fashion. All subscribers will receive the same values.

fun main() = runBlocking {
 RadioStation().beginBroadcasting(this)
}

class RadioStation {
 private val _messageFlow = MutableSharedFlow<Int>()
 val messageFlow = _messageFlow.asSharedFlow()

 fun beginBroadcasting(scope: CoroutineScope) {
 scope.launch {
 while(true) {
 delay(500.milliseconds)
 val number = Random.nextInt(0..10)
 log("Emitting $number!")
 _messageFlow.emit(number)
 }
 }
 }
}

Hide the mutableFlow behind a RO getter

Subscriptions
// output
559 [main] Emitting 0!

1066 [main] Emitting 9!
1070 [main] A collecting 9!
1071 [main] B collecting 9!
1574 [main] Emitting 0!
1574 [main] A collecting 0!
1575 [main] B collecting 0!

2080 [main] Emitting 0!
2081 [main] A collecting 0!

2081 [main] B collecting 0!

51

fun main(): kotlin.Unit = runBlocking {
 val radioStation = RadioStation()
 radioStation.beginBroadcasting(this)
 delay(600.milliseconds)

 launch {
 radioStation.messageFlow.collect {
 log("A collecting $it!")
 }
 }

 launch {
 radioStation.messageFlow.collect {
 log("B collecting $it!")
 }
 }
}

A state flow broadcasts a variable’s state
A state flow is a special type of shared flow that makes it easy to track changes to a variable.

fun main() {
 val vc = ViewCounter()
 vc.increment()
 vc.increment()
 vc.increment()
 println(vc.counter.value)
}

class ViewCounter {
 private val _counter = MutableStateFlow(0)
 val counter = _counter.asStateFlow()

 fun increment() {
 _counter.update { it + 1 }
 }
}

52

// output
3

`update` makes the operation atomic, so
even if multiple coroutines are trying to
update at the same time, no data is lost.

initial value

Choosing a flow?

53

Often both will work. You should consider the behavior of the flow and if it
matches your data monitoring requirements.

Reference

• Aigner et al. 2024. Kotlin in Action, 2nd edition.
• Google. 2025. Kotlin Flows on Android.
• Leeds. 2025. Kotlin: An Illustrated Guide.
• Otta. 2025. What is reactive programming?

54

https://www.manning.com/books/kotlin-in-action-second-edition
https://developer.android.com/kotlin/flow
https://typealias.com/start/kotlin-coroutines/
https://www.baeldung.com/cs/reactive-programming

