
Data Representation
CS 346 Application

Development

Applications = Data + Computation
Meaningful applica-ons interact with data.

• e.g., text editors write text files; graphics editors load and modify images.

Consider what data your applica-on manipulates:
• What is the source of data: is it loaded from a file or streamed from a service?
• Does it have a format that I need to be able to manipulate? e.g., JPEG images.
• Do I need to cache data locally, or do I reload it as-needed? If so, when and how?
• How do I represent this data in my code?

• You also need to consider how the data will be used:
• Is the data specific to a user (e.g., password), or applicaIon (e.g., window size).
• Do you need to export or transmit the data, or store is in a shared locaIon?
• What are the privacy and security implicaIons of transmiKng or storing this data?

2

Data Models
We normally use data models to describe our data. These are high-
level visual representa9ons that describes elements, their structure
and rela9onships to one another.

3

Conceptual models –
high-level structure
(e.g., description)

Physical model – how
system is implemented
(e.g., data structures)

Logical Model – rules governing
how data is represented (e.g.,

UML, classes)

Class representa+on (UML)

Logical records (text representa+on)

Our data model needs to provide us with some flexibility!
We may need to save to a file, send to a remote machine, save to a database.
Our goals are (1) correct representation, and (2) the ability to adapt to different needs.

4

1251, 01687, “CS”, “346”, “ApplicaPon Development”, “IntroducPon to
full-stack applicaPon design”

val record = Course (
 1251,
 01687,
 “CS”,
 “346”, “Application Development”,
 “Introduction to full-stack application design”
)

Logical records (object representation)

Data Classes

5

The obvious choice for storing records would be to use a data
class for the record, and a collec?on to store a set of records.

data class Course (
val term: Int,
val courseID: String,
val subjectCode: String,
val catalogNumber: String,
val title: String = “”,
val description: String = “”

)

val courses = List<Course>() !// List of courses
courses.add(Course(1251, ”01687", ”CS”, “346”))

Class representation

Your data may be structured differently
across systems. For example, a service
may return more fields in a record than
you care about internally!

6

open class CourseDao(
 val courseId: String,
 val courseOfferNumber: Int,
 val termCode: Int,
 val termName: String,
 val associatedAcademicCareer: String,
 val associatedAcademicGroupCode: String,
 val associatedAcademicOrgCode: String,
 val subjectCode: String,
 val catalogNumber: String,
 val title: String,
 val descriptionAbbreviated: String,
 val description: String,
 val gradingBasis: String,
 val courseComponentCode: String,
 val enrollConsentCode: String,
 val enrollConsentDescription: String,
 val dropConsentCode: String,
 val dropConsentDescription: String,
 val requirementsDescription: String?
)

open class Course(
 val term: Int,
 val courseID: String,
 val subject: String,
 val catalogNumber: String,
 val title: String,
 val description: String
)

API DB

GitLab: demos > courses

https://git.uwaterloo.ca/cs346/demos/courses

Class conversion

open class Course(
val term: Int,
val courseID: String,
val subject: String,
val catalogNumber: String,
val title: String,
val description: String

) {
 constructor(course: CourseDao): this(
 term = course.termCode,
 courseID = course.courseId,
 subject = course.subjectCode,
 catalogNumber = course.catalogNumber,
 title = course.title,
 description = course.description,
)
}

7GitLab: demos > courses

The courses demo contains
three different representations
of course data: DB, web service
and data class. It has multiple
constructors like this.

https://git.uwaterloo.ca/cs346/demos/courses

Managing Data Classes

So, internally we store data in classes.

How do you take an object and:
• write it to a file,
• transmit it over a network connec?on,
• save it to a database?

ORM vs. manually mapping
What formats are suitable for these scenarios?

8

Data formats
What we want in a storage format.

9

Structured CSV
• The simplest way to store records might be to use a CSV (comma-

separated values) file. We use this structure:
• Each row corresponds to one record (i.e. one object)
• The values in the row are the field for each record, separated by commas.

• For example, transaction data file stored in a comma-delimited file:

 1001, Jeff Avery, Cambridge
 1002, Allison Barnett, Waterloo
 1003, John McAfee, Delphi

10

CSV realizaPon of this class data.

Reading/Wri=ng Objects to CSV

11

data class Customer (val cust_id: Int, val name: String, val city: String)

val customers = List<Customer>() !// list of customers
customers.add(Customer(1001, "John Hall", "New York"))
customers.add(Customer(1002, "Allison Barnett", "Waterloo"))
customers.add(Customer(1003, "John McAfee", "Delphi"))

File(“output.csv").open("w").use {
it.write("Customer ID, Name, City\n")
for (customer in customers) {

it.write("${customer.cust_id},${customer.name},${customer.city}\n")
}

}

Reading the file will require loading a line and
spli^ng at each delimiter (comma).

Pro/Con of CSV files
CSV is literally the simplest possible thing that we can do.
• As a file format, it has some advantages:

• Programming languages can easily work with CSV files (they’re just text!)
• It’s pretty space efficient.
• It’s human-readable. Kind-of.

• However, CSV comes with some big disadvantages:
• It doesn’t work very well if your data contains the delimiter (e.g. a comma in your

city field).
• It assumes a fixed structure and doesn’t handle variable length records.
• It’s hard to read! There is no semantic information to make sense of it. (i.e., there is

no simple way to interpret the structure, no schema file format).
• It doesn’t work for complex, multi-dimensional data. e.g. Customer transactions.

12

Structured Data formats: XML
Extensible Markup Language (XML) is a markup language that
designed for data storage and transmission.
• Defined by the World Wide Web Consor9um’s XML specifica9on, it

was the first major standard for markup languages. It’s structurally
similar to HTML, with a focus on data transmission (vs. presenta9on).

Structure consists of pairs of tags that enclose data elements. AJributes can be
added.

 <name>Jeff!</name>
 This is a caption!

You can have a schema that describes the data structure! You can validate data.

13

XML Example

14

Example of a music collection structured in XML1.

<catalog>
 <album>
 <title>Empire Burlesque</title>
 <artist>Bob Dylan</artist>
 <company>Columbia</company>
 <price>10.90</price>
 <year>1985</year>
 </album>
 <album>
 <title>Innervisions</title>
 <artist>Stevie Wonder</artist>
 <company>The Record Plant</company>
 <price>9.90</price>
 <year>1973</year>
 </album>

</catalog>

1. Check out these albums!

Album is a record, containing
Fields for title, artist etc.

Notice the opening and closing tags. If
XML looks like HTML, that’s because

they’re both descended from a
common ancestor language, SGML.

Reading/Wri=ng Objects to XML

15

data class Customer (val cust_id: Int, val name: String, val city: String)

val customers = List<Customer>() !// list of customers
customers.add(Customer(1001, "John Hall", "New York"))
customers.add(Customer(1002, "Allison Barnett", "Waterloo"))
customers.add(Customer(1003, "John McAfee", "Delphi"))

File(“output.xml").open("w").use {
it.write(”<customers>")
for (customer in customers) {

it.write(“<customer>”)
it.write(”<cust_id>${customer.cust_id}!</cust_id>”)
it.write(”<name>${customer.name}!</name>”)
it.write(”<city>${customer.city}!</city>”)

}
it.write(”!</customers>")

} Reading the file will require a very complex
parser e.g., Stax for Java.

Pros/Cons of XML
XML provides structure.
• The use of tags, and the optional use of a schema file, means that we

can formally define the semantic structure of our data!
• This provides some major advantages compared to CSV.

• Can rely on structure to infer the meaning of data.
• You can nest elements e.g., collections of records.

XML is rarely used except in legacy systems. Why?
• Tags “bloat” the data, which results in excessive space requirements.
• Practically impossible to parse without a complex library.

16

Structured Data Format: YAML
YAML Ain't Markup Language (YAML) is a
data serializa-on language. It’s easy for
humans to read, and it’s commonly used for
configura-on.

• Three dashes: start of YAML document
• Key: value pairs
• Lists: dash for each element

• Thoughts on human-readable formats
• Used extensively for config files.
• IndentaIon used for structure; difficult to

parse manually.
• Not as widely supported as other formats :/

17

!!---
doe: "a deer, a female deer"
ray: "a drop of golden sun"
pi: 3.14159
xmas: true
french-hens: 3
calling-birds:
 - huey
 - dewey
 - louie
 - fred
xmas-fifth-day:
 calling-birds: four
 french-hens: 3
 golden-rings: 5
 partridges:
 count: 1
 location: "a pear tree"
 turtle-doves: two

Example from hbps://www.cloudbees.com/

http://yaml.org/
https://www.cloudbees.com/

Structured Data Format: JSON
JSON (JavaScript Object Notation) is an open standard file format, and
data interchange format that’s commonly used on the web.
• It’s based on JavaScript object notation but is language independent.

It was standardized in 2013 as ECMA-404.
• JSON has a much simpler syntax compared to XML or YAML.

• Data elements consist of name/value pairs
• Fields are separated by commas
• Curly braces hold objects
• Square brackets hold arrays

• JSON is preferred for communications, data persistence. It is widely
supported by existing programming languages.

18

JSON Example

19

{ "catalog":
 {
 "albums": [
 {

 "title":"Empire Burlesque",
 “artist":"Bob Dylan",
 "company":"Columbia",
 "price":"10.90",
 "year":"1988"
 },
 {
 "title":"Innervision",
 “artist":"Stevie Wonder",
 “company":"The Record Plant”,
 "price":"9.90",
 "year":"1973"
 }]
 }
}

Album is a record, containing albums.
[] denotes an array, { } encloses an

object

No tags, just keys and values! Much
easier to read, since it’s all meaningful

data.

Condensing closing tags makes JSON easier to read.

{ “employees":[
 { "first":"John", "last":"Zhang", “dept":"Sales” },
 { "first":"Anna", "last":"Smith", "dept":"Engineering” }
]
}

Compare this to the corresponding XML:

<employees>
 <employee><first>John</first> <last>Zhang</last> <dept>Sales</dept></employee>
 <employee><first>Anna</first> <last>Smith</last> <dept>Eng.</dept></employee>
</employees>

This is a small record. I had to remove fields to fit the slide.
20

Serializa/on
Conver?ng between representa?ons

21

Serializing Data
We have objects in memory. We’d like to convert them to JSON to save them. How
can we accomplish this?
• SerializaIon is a mechanism to convert a data object to a useful format that you

can save/stream or otherwise manipulate outside of your program.
• Serializa7on: save your object to a stream (file or network).
• Deserializa7on: instanIate an object from your stream (file or network).

22

class Emp(var name: String, var id:Int) : Serializable {}
var file = FileOutputStream(“datafile")
var stream = ObjectOutputStream(file) // binary format

var ann = Emp(1001, "Anne Hathaway", "New York")
stream.writeObject(ann) // serialize to a file

Reading/Writing Objects to JSON
We can use serializa?on to convert objects directly into JSON format!

• Serialize data objects into JSON strings.
• Save those strings (aka text) to disk/stream over a network/save to a database.
• DeserializaIon can be used to reverse the process (convert stream à object in mem)

To add serializa?on support, install these plugins/dependencies (newest versions):
plugins {

 id 'org.jetbrains.kotlin.plugin.serialization' version '1.9.10'
}
dependencies {
 implementation "org.jetbrains.kotlinx:kotlinx-serialization-json:1.5.1"

}

23

@Serializable
data class Project(val name: String, val owner: Account, val group: String)

@Serializable
data class Account(val userName: String)

val moonshot = Project("Moonshot", Account(“Jane”), “R&D”)
val cleanup = Project("Cleanup", Account("Mike"), “Maintenance")

val string = Json.encodeToString(listOf(moonshot, cleanup))
 // [{“name”:”Moonshot”,”owner":{"userName":"Jane"}, “group":"R&D"},
 // {“name”:"Cleanup","owner" {“userName":"Mike"},"group":"Maintenance"}]

val projectCollection = Json.decodeFromString<List<Project>>(string)
 // [Project(name=Moonshot, owner=Account(userName=Jane), group=R&D),
 // Project(name=Cleanup, owner=Account(userName=Mike), group=Maintenance)]

24

JSON as a standard

• We’ll use JSON for storing and transmitting data anywhere that we need it.
• Structure + data means that we can process it consistently.

• We can easily convert JSON to/from object format
• Easy to work with it! It’s just a string.

• Read it, print out to the console
• Save in a text file, using standard File classes
• Saved to a database
• Send over a network — see web services lecture

Don’t underestimate the value in being able to read your data in a debugger, or text editor
as you’re working with it. JSON being human-readable text is one of its biggest
advantages as a data file format.

25

