
Databases
CS 346 Application

Development

1

The need for data management

• Most applications that you build will have data that they need to
persist. e.g.,
• a music player might store playlists of music,
• a social media application might store account and login information,
• a photo editor might store your preferred file location, and image settings,
• any application might store preferred theme, window size and location.

• You will typically store this type of data in a database.

2

What is a database?
A database is a system for storing data as records.
• It’s designed to handle large volumes of data.
• It supports efficient and complex operations.
• Facilitates data sharing across concurrent

users/systems.

A record is a set of related fields.
• A Customer class describes a Customer as a set of

properties and behaviours.
• A Customer record describes it as related fields.

e.g.,
Customer(cust_id=1001, name=“Jeff Avery”, city=“Waterloo”)

3

Applications often consume data from
many different sources and need to store it

in a consistent manner.

Data guarantees: ACID
ACID represents a set of properties intended to guarantee data validity despite errors,
power failures, and other mishaps.
Ideally, we want these properties in our database:
• Atomicity prevents updates to the database from occurring only partially.
• Consistency guarantees that transaction can move database from one valid state to

the next. All associated changes take place together.
• Isolation determines how a particular action is shown to other concurrent system

users. e.g., how you handle cases of reading data that is being changed.
• Durability is the property that guarantees that transactions that have been

committed will survive permanently.

4

Relational Databases
There are many different types of databases. The two main approaches that you
will encounter are:
• Relational (SQL) databases for structured data e.g., Oracle, PostgreSQL, MySQL

• Document (NoSQL) databases for unstructured data e.g., MongoDB

We’ll focus on relational databases:
1. ACID compliance. NoSQL databases often trade safety for performance.
2. They allow for very efficient data storage with little redundancy.
3. They are optimized for operations on sets of records.

• This mirrors how we want to work with our data.
• e.g., “fetch all sales that were recorded last night in the Chicago office”.

5

https://www.oracle.com/ca-en/database/technologies/
https://www.postgresql.org/
https://www.mysql.com/
https://www.mongodb.com/

Relational Databases
Old-school, SQL databases. Still incredibly useful.

6

Table
A relational database structures data into tables representing logical entities e.g.
Customer and Transaction tables. Records are stored as rows in each table.

A table is a foundational concept. It collects related fields into records.
e.g. Customer table contains customer information

• One record (row) per customer
• One field (column) for each property of that customer.

7

Fields (Columns)

Records (Rows)

Data -> Tables

8

Primary Key
You need a way to uniquely identify each record in a table.
• A key is a column that helps us identify a row or set of rows in a table.
• A primary key is a column in a database with a value that uniquely identifies

each row. A table cannot normally have more than one primary key.
• In the table below, cust_id is a unique identifier for each row in the customer table.
• Specifying cust_id=1002 will restrict an operation to the Marie Curie record.

9

Records spanning tables
Relational databases reduce data
redundancy by splitting records
across multiple tables.
e.g.
Imagine that we have an online
store. We want to track both
Customer and Transaction (Sales)
information, so we split this data
across two tables.
If Mme. Curie purchases something
else later, we only need to add one
Transaction row; the Customer row
doesn’t change.

10

Using foreign Keys
How do we associate our two tables?
A foreign key is a key used to refer to
data being held in a different table.
A primary key of one table is the
foreign key in a different table.
Customer table

• Primary key: cust_id
Transactions table

• Primary key: tx_id
• Foreign key: cust_id

11

Each transaction can be uniquely identified by the
primary key tx_id. It is linked to a unique customer
through cust_id.

Reconstructing a record
We want to store our data using multiple tables to avoid redundancy,
but we will eventually want to recreate the complete record.

12

101, Jeff Avery, 233, 5
233, Waterloo
5, Ontario,

- cust_id: Integer
+ name: String
+ city_id: Integer
+ prov_id: Integer

Customer - city_id: Integer
+ name: String

City

- prov_id: Integer
+ name: String

Province

231, Wallaceburg
232, Washago
233, Waterloo
…

3, Saskatchewan
4, Manitoba
5, Ontario
…

101, Jeff Avery, 233, 5
102, Brien Bendis, 231, 3

103 Julie Zhang, 155, 2

101, Jeff Avery, Waterloo, ON

Joins
A join describes the relationship between records in different tables. We split
data for efficiency but joins lets us reassemble records when we need that
information again. We’ll revisit joins in a moment…

13

Transactions ensure ACID
To achieve safety, we treat multiple actions that are being performed as
a single unit of work called a transaction.

• All changes are performed together (atomic).
• If there is any error in performing an action, we undo all of these actions.

• How do you use this?
• “start” a transaction when you perform a series of operations and
• “commit” when you are done.

• This is how we can handle:
• Two or more users are updating the same data at the same time, or
• One person reading data while one modifies it, or
• An update failure that doesn’t leave data in an inconsistent state.

14

Details will
vary by
database

Designing a database
How do you decide on the structure? How do you create and manage it?

15

Steps to create a database

1. Decide on the tables (entities) to model.
• These should come from your requirements.
• What data do you need to store for your features?
• Optional: Entity-Relationship Diagram (ERD)

2. Normalize the schema to remove inefficiencies.
• 1NF, 2NF, 3NF

3. Design the tables.
• Columns, data types, relationships, keys.

16

An Entity Relationship Diagram (ERD)
created in Mermaid.

https://mermaid.js.org/syntax/entityRelationshipDiagram.html
https://mermaid.js.org/syntax/entityRelationshipDiagram.html
https://mermaid.js.org/syntax/entityRelationshipDiagram.html
https://mermaid.js.org/syntax/entityRelationshipDiagram.html
https://mermaid.js.org/syntax/entityRelationshipDiagram.html

What is an ERD?
A diagram that shows entities and their
relationships.
• Tables: entities that we wish to model.

• e.g., Customer, Order and Line-Item.
• Columns: fields in each entity.

• e.g., name, custNumber, sector.
• Relationships: how entities are related.

• e.g., customer-places-order
• e.g., order-contains-line-item.

• Cardinality: numerical relationship between
rows of one table and rows in another.
• e.g., 1 customer places 0 or more orders.
• e.g., 1 order contains at least one line item.

17

See mermaid.js to
generate diagrams.

Cardinality symbols

https://mermaid.js.org/syntax/entityRelationshipDiagram.html

Design Tables

• Start by thinking about your requirements.
• Which entities do you need to represent your data?
• Entities à Tables

• If you’re unsure of where to start, make a list of all the data items
that you need to satisfy your functional requirements.
• e.g., mm-android application had entities for TASK and TAGS.
• 1 task contains 0 or more tags (strings associated with a task).

• If you’ve already got your application working and are adding the
database now? Look at your data classes for ideas.
• Each data class is probably an entity.

18

Normalization

1NF: each field is atomic, containing a single value rather than a set of values
2NF: 1NF and no partial dependencies i.e., partial composite keys.

3NF: 2NF and each dependency must depend solely and non-transitively on
the candidate key.

-- Wikipedia

19

https://en.wikipedia.org/wiki/Database_normalization

Determine Column Data Types

• Numeric:
• INTEGER: whole numbers
• DECIMAL: fixed precision and scale e.g., monetary values
• FLOAT: floating point

• Character
• CHAR: fixed length strings
• VARCHAR: variable length strings up to a max length
• TEXT: large blocks of text e.g., text editor

• Date
• DATE: date in YMD
• TIME: time in HMS

20

Your DB may support
more exotic types
e.g., XML but we

generally won’t need
them.

Determine Relationships (and Keys)
• How are your tables related to one another?
• Each table needs a primary key

• Should be auto-generated by the database
• Use constraints e.g., NOT NULL to enforce data integrity

• Allow the libraries to enforce relationships
• Specify PK and FK relationships in your schema
• Don’t rely on yourself to form queries properly (it’s easy to make mistakes!)

21

Structured Query Language (SQL)
How to write queries for your relational database.

22

How do we perform database operations?
SQL (pronounced ”Ess-que-ell”) is a Domain-Specific Language (DSL) for
describing your queries. Using SQL, you write statements describing the
operation to perform and the database performs them for you.
• SQL is an ANSI/ISO standard1, so SQL commands work the same way

across different relational databases. You can use it to:
• Create new records
• Retrieve sets of existing records
• Update the fields in one or more records
• Delete one or more records

• ———
• 1. SQL was adopted by ANSI in 1986 as SQL-86, and by ISO in 1987.

23

SQL Syntax

SQL has a particular syntax for managing sets of records:

 <operation> (FROM) [table] [WHERE [condition]]
 operations: SELECT, UPDATE, INSERT, DELETE, ...
 conditions: [col] <operator> <value>

You issue English-like sentences describing what you intend to do.
• SQL is declarative: you describe what you want done, but don’t need

to tell the database how to do it.
• There’s also a relatively small number of operations to support.

24

Create: Add new records

INSERT adds new records to your database.

INSERT INTO Customer(cust_id, name, city)
 VALUES (1005, “Molly Malone", "Kitchener")

INSERT INTO Customer(cust_id, name, city)
 VALUES (1005, “April Ludgate", "Kitchener") // problem?

25

Retrieve: Display existing records

SELECT returns data from a table, or a set of tables. NOTE: Asterix (*) is a
wildcard meaning “all”.

SELECT * FROM Customers
--> returns ALL data

SELECT * FROM Customers WHERE city = "Ottawa"
-- > {"cust_id"1003, "name":"Billy Bishop", "city":"Ottawa")

SELECT name FROM Customers WHERE custid = 1001
--> "Jeff Avery"

26

Update: Modify Existing Records

UPDATE modifies one or more fields based in every row that matches the
criteria that you provide.
If you want to operate on a single row, you need to use a WHERE clause to
give it some criteria that makes that row unique.

UPDATE Customer SET city = "Kitchener" WHERE cust_id = 1001
—> updates one record since cust_id is unique for each row

UPDATE Customer SET city = "Kitchener" // uh oh
—> no “where” clause, so we change all records to Kitchener.

27

Delete: Remove records

DELETE removes every record from a table that matches the criteria
that you provide.
If you want to operate on a single row, you need to use a WHERE clause
to give it some criteria that makes that row unique.

DELETE FROM Customer WHERE cust_id = 1001
—> deletes one matching record since cust_id is unique

DELETE FROM Customer// uh oh
—> deletes everything from this table

28

Filtering with a “where” clause

A where clause allows us to filter a set of records.

e.g.,
UPDATE Customer SET city = "Kitchener" WHERE cust_id = 1001

29

Sorting with an “order by” clause

An “order by” sorts the results by the column name that you specify.

e.g.,
SELECT * FROM Products ORDER BY Price;

30

SELECT c.customer_id, c.first_name + “ “ + c.last_name, t.date, p.name, p.cost
FROM (Customer c
 INNER JOIN Transactions t ON c.customer_id = t.customer_id)
 INNER JOIN Products p ON t.product_id = p.product_id)

1001, Jeff Avery, 12-Aug-2020, T-shirt, 29.95
31

Joining records

Types of SQL joins

OrderID CustomerID OrderDate

10308 2 1996-09-18

10309 37 1996-09-19

10310 77 1996-09-20

32
Example from https://www.w3schools.com/sql/sql_join.asp

CustomerID CustomerName ContactName Country

1 Alfreds Futterkiste Maria Anders Germany

2 Ana Trujilo Emparedados y helados Ana Trujilo Mexico

3 Antonio Moreno Taqueria Antonio Moreno Mexico

These two tables are related
through the CustomerID
column.

We have multiple ways that we can associate these tables based on this relationship.

https://www.w3schools.com/sql/sql_join.asp

Types of SQL joins

• (INNER) JOIN: Returns records that have matching values in both tables
• LEFT (OUTER) JOIN: Returns all records from the left table, and the matched

records from the right table
• RIGHT (OUTER) JOIN: Returns all records from the right table, and the matched

records from the left table
• FULL (OUTER) JOIN: Returns all records when there is a match in either left or

right table

33

Example: INNER Join

SELECT ProductID, ProductName, CategoryName
FROM Products
INNER JOIN Categories
ON Products.CategoryID = Categories.CategoryID;

34

Only returns values where the CategoryID exists in both
Products and Categories.

e.g., if a Product existed in the Product table but there was no
corresponding category in the Categories table, then it would
now show up in the query results.

Example: LEFT (OUTER) Join

SELECT column_name(s)
FROM table1
LEFT JOIN table2
ON table1.column_name = table2.column_name;

35

Returns all the records from the left-most table, and the
matching records from the right-hand table. If there is no
match in the right-hand side, those fields will be left blank.

e.g., if a Product existed in the Product table but there was no
corresponding category in the Categories table, then it would
show up in the query results with an empty category.

Example: RIGHT (OUTER) Join

SELECT column_name(s)
FROM table1
LEFT JOIN table2
ON table1.column_name = table2.column_name;

36

Returns all the records from the right-most table, and the
matching records from the left-hand table. If there is no
match in the left-hand side, those fields will be left blank.

e.g., in our product example where there were no matching
categories, you would retrieve all the categories but non-
matching products would be blank.

SQLite
Using a simple library-based relational database.

37

Introduction

38

SQLite (pronounced ESS-QUE-ELL-ITE) is a small-scale relational
DBMS. It is small enough for local, standalone use and is
preinstalled on Android and many operating systems.

 "SQLite is a C-language library that implements a small, fast, self-
contained, high-reliability, full-featured, SQL database engine.

SQLite is the most used database engine in the world.
SQLite is built into all mobile phones and most computers..."

https://www.sqlite.org/index.html

https://www.sqlite.org/index.html

Things to know about SQLite

• SQLite is a C-library, that can be installed practically anywhere.
• It’s preinstalled on macOS, Linux and Android.

• Your database is stored on a local file-system.
• Should be accessible to your application.
• Your database is actually a single file e.g., `chinook.db`.

• It’s intended for single-user use only.
• No authentication i.e. no username/password required.
• Secure the database the same way that you would a file e.g., encrypted on a

local hard drive, in the user’s home directory.

• It’s blisteringly fast and very lightweight.

39

Check the installation
Run the `sqlite3` command to see if it’s preinstalled.
You can also download and open a sample database e.g., chinook.db

$ sqlite3
SQLite version 3.43.2 2023-10-10 13:08:14
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.

sqlite> .open chinook.db
sqlite> .tables
albums employees invoices playlists
artists genres media_types tracks
customers invoice_items playlist_track
sqlite> select * from artists;
… 40

https://www.sqlitetutorial.net/sqlite-sample-database/

Installation
You can install the SQLite database/library under Mac, Windows or Linux.
1. Visit the SQLite Download Page. Download the binary for your platform.
2. To test it, launch it from a shell.

$ sqlite3
SQLite version 3.28.0 2019-04-15 14:49:49
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.

$sqlite> .exit

41

Check before
installing, you

may have it
preinstalled!

https://www.sqlite.org/download.html

Useful Commands

42

Command Purpose

.open <filename> Open database <filename>.

.database Show all connected databases.

.log <filename> Write console to log <filename>.

.read <filename> Read input from <filename>.

.tables Show a list of tables in the open database.

.schema <table> SQL to display create stmt for a <table>.

.fullschema SQL to create the entire database structure.

.quit Quit and close connections.

To get a list of commands, run `sqlite3` and then enter `.help.

$ sqlite3
SQLite version 3.28.0 2019-04-15 14:49:49
Enter ".help" for usage hints.

sqlite> .open chinook.db // name of the file
sqlite> .mode column // lines up data in columns
sqlite> .headers on // shows column names at the top

sqlite> .tables
albums employees invoices playlists
artists genres media_types tracks
customers invoice_items playlist_track

sqlite> .schema genres
CREATE TABLE IF NOT EXISTS "genres"
(
 [GenreId] INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
 [Name] NVARCHAR(120)

);
43

Examples of selecting from a single table at a time:

 sqlite> SELECT * FROM albums WHERE albumid < 5;

 AlbumId Title ArtistId
 ---------- ------------------------- ----------
 1 For Those About To Rock 1
 2 Balls to the Wall 2
 3 Restless and Wild 2
 4 Let There Be Rock 1

 sqlite> SELECT * FROM artists WHERE ArtistId = 1;

 ArtistId Name
 ---------- ----------
 1 AC/DC

44

Example of a JOIN across two tables (based on a primary key, “ArtistId“’). You often
will have multiple WHERE clauses to join between multiple tables.

 sqlite> SELECT albums.AlbumId, artists.Name, albums.Title
 FROM albums, artists
 WHERE albums.ArtistId = artists.ArtistId
 AND albums.AlbumId < 4;

 AlbumId Name Title
 ---------- ---------- ------------------------
 1 AC/DC For Those About To Rock
 2 Accept Balls to the Wall
 3 Accept Restless and Wild
 4 AC/DC Let There Be Rock

45

Accessing a database
Options for connecting your application to a relational database.

46

Using JDBC to connect
Kotlin can use the Java JDBC API to connect to any compliant database,
including SQLite.
• Most/all databases have a JDBC driver available.
• Google database + “JDBC” to locate drivers.

To create a database project in IntelliJ:
1. Create a Gradle/Kotlin project.
2. Modify the build.gradle.kts to include your database driver:
implementation(“org.xerial:sqlite-jdbc:3.50.3.0”) // see GitHub

3. Use the Java SQL package classes to connect and fetch data.

47

https://github.com/xerial/sqlite-jdbc

Creating a connection

48

This example uses a sample database from the SQLite tutorial.
• We first create a connection to the database.
• The URL designates the type of database, and location of the database file.

fun connect(): Connection? {
 var connection: Connection? = null
 try {
 val url = "jdbc:sqlite:chinook.db” // URL format varies by driver
 connection = DriverManager.getConnection(url)
 println("Connection to SQLite has been established.")
 } catch (e: SQLException) {
 println(e.message)
 }
 return connection
}

Running a query

49

fun query(connection: Connection?) {
 try {
 if (connection != null) {
 val sql = "select albumid, title, artistid from albums where albumid < 5"
 val query = connection.createStatement()
 val results = query.executeQuery(sql)
 println("Fetched data:");
 while (results.next()) {
 val albumId = results.getInt("albumid")
 val title = results.getString("title")
 val artistId = results.getInt("artistid")
 println(albumId.toString() + "\t" + title + "\t" + artistId)
 }
 }
 } catch (ex: SQLException) {
 println(ex.message)
 }

}

Fetched data:
1 For Those About To Rock We Salute You. 1
2 Balls to the Wall 2
3 Restless and Wild 2
4 Let There Be Rock 1

Why you shouldn’t use JDBC like this
JDBC is a useful mechanism for connecting to remote databases, but making raw SQL calls
through the sql packages is error-prone:
• No type checking,

• No other safety mechanisms in-place.

• Requires us to explicitly convert between string data and class objects that are holding our data.

Not recommended, for any scenario.

A better-practice is to use a library that abstracts this functionality:
• Exposed is a JetBrains library for working with JDBC databases. It works with desktop but not Android.

• Room is a Google library for working with SQLite databases. It works with both desktop and Android.

50

https://github.com/JetBrains/Exposed
https://github.com/JetBrains/Exposed
https://developer.android.com/training/data-storage/room
https://developer.android.com/training/data-storage/room

Option 1: Exposed (JVM)

Exposed is a framework that provides a cleaner interface for working
with JDBC. It provides two approaches:
• Domain Specific Language (DSL) – if you want a query language,
• Data Access Objects (DAO) – classes to abstract DB access,

Exposed works through JDBC and supports most popular databases
including SQLite, H2, Oracle, Postgres…
• https://github.com/JetBrains/Exposed

51

https://github.com/JetBrains/Exposed
https://github.com/JetBrains/Exposed

Example: mm-desktop
implementation(libs.exposed.core)
implementation(libs.exposed.crypt)
implementation(libs.exposed.dao)
implementation(libs.exposed.jdbc)
implementation(libs.exposed.jodatime)
implementation(libs.exposed.java.time)
implementation(libs.exposed.kotlin.datetime)
implementation(libs.exposed.json)
implementation(libs.exposed.money)

52

build.gradle.kts

Example: mm-desktop

class DBStorage(databaseName: String = ".mm.db"): IStorage {
object TaskTable : IntIdTable() {
 val position = integer("position")
 val title = varchar("title", length = 256)
 val description = varchar("description", length = 256)
 val dueDate = varchar("due_date", length = 16)
 val tags = varchar("tags", length = 256)
}

 init {
 Database.connect("jdbc:sqlite:$databaseName", "org.sqlite.JDBC")
 transaction {
 SchemaUtils.create(TaskTable, TaskTagTable, TagTable)
 }
}

 // other methods
}

53
GitLab: demos > mm-desktop

DAO is a custom
class that accesses
the underlying DB.

e.g., IntIdTable

https://git.uwaterloo.ca/cs346/demos/mm-desktop
https://git.uwaterloo.ca/cs346/demos/mm-desktop
https://git.uwaterloo.ca/cs346/demos/mm-desktop

Example: mm-desktop

override fun read(id: Int): Task? {
 return transaction {
 TaskTable
 .selectAll()
 .where { TaskTable.id eq id }
 .map { it ->
 Task(
 id = it[TaskTable.id].value,
 position = it[TaskTable.position],
 title = it[TaskTable.title],
 description = it[TaskTable.description],
 dueDate = it[TaskTable.dueDate],
 tags = it[TaskTable.tags]
)
 }.firstOrNull()
 }
}

54
GitLab: demos > mm-desktop

https://git.uwaterloo.ca/cs346/demos/mm-desktop
https://git.uwaterloo.ca/cs346/demos/mm-desktop
https://git.uwaterloo.ca/cs346/demos/mm-desktop

When to use Exposed?

• Exposed is ideal for back-end or JVM solutions.
• e.g., a desktop application, or a web server accessing a database.

• Works great with coroutines, suspending functions.
• Highly recommended for web services that need DB access.

• It is NOT recommended for mobile development.
• JDBC drivers are not usually intended to run on Android.
• Android has its own (better performing) solution.

55

Option 2: Room (Android)

Google created Room in 2017, as an abstraction layer over SQLite.
Addresses runtime stability issues that you get when you work with low-level APIs:
• Compile time verification of SQL queries.
• Checks for missing tables and other entities to avoid runtime crashes.

It’s also designed around the use of Data Access Objects (DAO).
Room + SQLite is Google’s recommended solution for Android.

56

https://developer.android.com/training/data-storage/room

@Entity
@Entity
• DAO that represents a table.
• Effectively a data class with annotations for columns, keys.

@Entity
data class Contact(
 @PrimaryKey(autogenerate = true)
 val id: Int = 0,
 val firstName: String,
 val lastName: String,
 val phoneNumber: String
)

57

@ denotes an
annotation. The
compiler will replace
these expressions
with code.

@Dao
@Dao (Data access object)
• DAO that represents methods to access the database

@Dao
interface ContactDao {
 @Upsert
 suspend fun upsertContact(contact: Contact)

 @Delete
 suspend fun deleteContact(contact: Contact)

 @Query("SELECT * FROM contact ORDER BY firstName ASC")
 fun getContactsOrderedByFirstName(): Flow<List<Contact>>

 @Query("SELECT * FROM contact ORDER BY lastName ASC")
 fun getContactsOrderedByLastName(): Flow<List<Contact>>
}

58

suspend denotes a suspending
function; think of it as a
function that can suspend
itself while waiting for the
database function to
complete. We’ll discuss this
more in the coroutines lecture.

@Database
@Database
• DAO that represents the main access point to the database.

@Database(entities = [Contact::class], version = 1)
abstract class ContactDatabase: RoomDatabase() {
 abstract val dao: ContactDao
}

59

Example: mm-android
MainActivity: binds things together

/*
 MainActivity launches everything
 The Application screen only accesses data through the ViewModel
 */
val database: TaskDb = getRoomDatabase(this)
val model = Model(database.taskDao())
val viewModel = TaskViewModel(model)

setContent {
 MMTheme {
 Application(viewModel)
 }
}

60

Example: mm-android

TaskEntity: models a table.

@Entity(tableName = "task_table")
data class Task(
 @PrimaryKey(autoGenerate = true) val id: Int = 0,
 @ColumnInfo(name = "title") val title: String,
 @ColumnInfo(name = "description") val description: String,
 @ColumnInfo(name = "due_date") val dueDate: String,
 @ColumnInfo(name = "tags") val tags: String,
 @ColumnInfo(name = "position") val position: Int,
)

61

This is just a data class with
annotations added to it.

Example: mm-android
TaskDao: interactions with the database

@Dao
interface TaskDao: IDao {
 @Query("SELECT * FROM task_table")
 override fun getAll(): Flow<List<Task>>

 @Query("SELECT * FROM task_table WHERE id = :id")
 override suspend fun getById(id: Int): Task

 @Query("DELETE FROM task_table")
 override suspend fun deleteAll()

 @Delete
 override suspend fun delete(task: Task)

 @Insert
 override suspend fun insert(task: Task)

 @Update
 override suspend fun update(task: Task)
}

62

The Room annotation
processor will generate code
for these methods!

Example: mm-android

TaskDb: the database object

/*
 * Room DB
 * https://developer.android.com/training/data-storage/room
 */

@Database(entities = [Task::class], version = 1, exportSchema = false)
abstract class TaskDb : RoomDatabase(), IDb {
 abstract override fun taskDao(): TaskDao
}

fun getRoomDatabase(applicationContext: android.content.Context): TaskDb {
 val builder = databaseBuilder<TaskDb>(
 context = applicationContext,
 name = applicationContext.getDatabasePath("task.db").toString()
)
 return builder
 .fallbackToDestructiveMigrationOnDowngrade(true)
 .setQueryCoroutineContext(Dispatchers.IO)
 .build()
}

63

Example: mm-android

Application: using the data in a View

@Composable
fun Application(viewModel: TaskViewModel) {
 val items by viewModel.getAll().collectAsState(initial = emptyList())

 LazyColumn(modifier = Modifier.fillMaxSize().padding(16.dp)) {
 items(items.size) { item ->
 TaskItem(
 task = items[item],
 isSelected = (items[item] == viewModel.selectedTask),
 onClick = { viewModel.selectedTask = items[item] },
 onDoubleClick = {
 viewModel.selectedTask = items[item]
 viewModel.showEditDialog = true
 }
)
 }
} 64

Why you don’t want to use Room

• Room is SQLite only.
• SQLite isn’t really meant for remote data. It’s great as a local solution, but you

can’t easily host it online.

• If you need to share data, you want a large-scale solution
• e.g., PostgreSQL, Oracle or something similar.

65

Option 3: Native SDK (Remote)

If you want to run against an online database you probably want a hosted
solution i.e. a platform that provides access.
• Hosted platforms will typically provide an SDK/access method.

Online platforms that support Kotlin:
• Supabase has a Kotlin client library that you can use to access a Postgres database.
• Neon can be used with JDBC and also provides Postgres access.

You are free to use other platforms that provide a SQL database and have adequate
security in-place to restrict access.
• You do NOT want to put your data in an open and insecure database on the Internet.

66

https://supabase.com/
https://supabase.com/
https://supabase.com/docs/reference/kotlin/introduction
https://neon.com/
https://neon.com/
https://neon.com/docs/guides/java

Testing
How to test your database.

67

Testing strategy

• Your database is an example of an external dependency
• Your application accesses it, but it’s effectively a “black box”.
• You cannot directly control how data is managed.
• You cannot and should not test it directly.

• You want to test your service (repository) code
• Check all operations
• Do you get consistent results?
• Assumption that the DB is ok, focus on testing your operations.

• Use your existing unit test framework
• Consider adding integration tests for larger features.

68

Test without compromising live-data

• You need to keep live and test data separate:
• Live Data

• Customer data, or Persistent test data.

• Test data
• Data that is only used by the tests in-progress.
• Test-database only used for this purpose:

• Creating data
• Running tests
• Deleting data

69
GitHub: demos > courses uses Exposed and has DB unit tests.

Reference
• Google. 2025. Room for Kotlin Multplatform
• Lackner. 2025. The FULL Beginner Guide for Room in Android
• Muntenescu. 2021. Kotlin: Using Room Kotlin APIs - MAD Skills
• Nilanjan. 2023. How to Access Database with Kotlin JDBC
• SQLite. 2023. SQLite Documentation.
• Various. 2025. Chinook Database
• Various. 2025. MS Northwind Database for SQLite
• W3Schools. 2023. Introduction to SQL.

70

https://developer.android.com/kotlin/multiplatform/room
https://www.youtube.com/watch?v=bOd3wO0uFr8
https://www.youtube.com/watch?v=vsDkhRTMdA0
https://www.youtube.com/watch?v=vsDkhRTMdA0
https://www.youtube.com/watch?v=vsDkhRTMdA0
https://levelup.gitconnected.com/
https://www.sqlite.org/docs.html
https://github.com/lerocha/chinook-database
https://github.com/jpwhite3/northwind-SQLite3
https://www.w3schools.com/sql/sql_intro.asp

