
Web Services
CS 346 Application

Development

1

What is a service?
A service is software that provides runtime capabilities to other software.
You already have local services on your computer that provide OS-level capabilities.
e.g. printer spooler, services for logging etc.

2

We’re specifically going to talk about
online services – those running on a
different computer over a network.

Many applications work with online
services to share data or communicate
with other applications. e.g. Twitter or
email client; Windows update; Overwatch.

Like a local service, these exist to provide
services to other software.

Why online services?
The benefits of moving services online are significant:
• Resource sharing. We often need to share resources or data across users.

e.g. a shared spreadsheet. Support for online resources supports this.
• Reliability. By moving critical data and computation to a central controlled

location, we can manage that data more securely. We also can potentially
support failover scenarios e.g., redirect clients in case of a failure.

• Parallelization. It can also be cheaper to spread computation across
multiple systems instead of relying on a single local system. Distributed
architectures provide flexibility dynamically allocate hardware as needed
based on performance characteristics.

• Performance. If designed correctly, distributing our work across systems
can allow us to grow our system to meet high demand e.g., Amazon “spins
up” services as needed and shuts them down when demand subsides.

3

How does this affect your application?
We can split computation across systems, based on our specific needs:

Client (local)
• Contains most of the application logic.
• Fetches data or posts data that needs to be shared.

Service (remote)
• Accessible to every client (i.e. each client knows how to connect to the

server, but not necessarily how to connect to other clients)
• Focused on computation where the results need to be shared with

one or more clients. Might also be used to handle sensitive data.
• A shared database could also fit this deployment model (we tend to

reserve the word “service” for systems that do more than store data).
4

1/ Client-Server model
Client-server architectures split processing
into front-end and back-end pieces. This is
also called a two-tier architecture. Tiers
represent a physical separation of concerns.

e.g., web browser/server.

The service just acts as a resource. Over time,
architectures moved towards offloading
more and more computation to the service.

5

2/ Service Architecture
A services-based architecture splits
functionality into small "portions of an
application”.
• Each service is independent and separately

deployed.
• Each service provides coarse-grained

domain functionality.
• Client communicates with each service

using some lightweight protocol.
• Services may share data via a database.
e.g. a service might handle a customer
checkout request to process an order,
managing the entire transaction.

6

https://maveric-systems.com/blog/microservices-i-
microservices-vs-soa/

https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/
https://maveric-systems.com/blog/microservices-i-microservices-vs-soa/

How do we make this work?
There are lots of complexities to building a system like this. We need to
address fundamental design challenges like:
1. How do the service and client “locate” each other on the network?

• We assume a name service like DNS exists.
• We might need to “know” the port number to connect to on each system.

2. How do we ensure that data is only sent to the “correct” clients?
• We need a secure authentication mechanism e.g., username/password.

3. How do the client and server communicate?
• We have many different protocols that could be used e.g., TCP/IP, FTP.
• Current “standard” is HTTP as a lightweight protocol, when possible.

8

Services > Communication
Web protocols in use.

9

Web architecture
The web is a great example of an early client-
server design.
A web browser (front-end) could request
content from a web server (back-end) hosted
on a different system.
• Requests were sent over the network using a

standard request format.
• Results were sent back synchronously.

• i.e., the web browser “blocks” waiting for
content to be served.

• The web server is stateless
• i.e., each request is served in isolation (ways

around this evolved over time).

10

Request format
The Hypertext Transfer Protocol (HTTP) is an application layer protocol that
supports serving documents, and processing links to related documents from
a remote service. It’s the primarily mechanism for the browser and server to
communicate.
HTTP is a request–response model: the client requests data from the server.

11

https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Request%E2%80%93response
https://en.wikipedia.org/wiki/Request%E2%80%93response
https://en.wikipedia.org/wiki/Request%E2%80%93response

HTTP Request Methods
The HTTP protocol supports the following types of requests aka “methods” :
• GET: The GET method requests that the target resource transfers a representation of its

state. GET requests should only retrieve data and should have no other effect.
• HEAD: The HEAD method requests that the target resource transfers a representation of

its state, like for a GET request, but without the data. Uses include checking if a page is
available or finding the size of a file.

• POST: The POST method requests that the target resource processes the representation
enclosed in the request according to the semantics of the target resource. e.g., post a
message on a forum, or complete an online shopping transaction.

• PUT: The PUT method requests that the target resource creates or updates its state with
the state defined by the representation enclosed in the request.

• DELETE: The DELETE method requests that the target resource deletes its state.

12

HTTP Request Format

An HTTP request consists of:
• An endpoint i.e., the URL describing the full path to a service.
• An HTTP method e.g., GET, PUT.
• A header

• Contains metadata about the request
• e.g., token authorizing access, or a cookie

• The request body
• A block of text (often in JSON!)

13

Web Services
A web service is a simply a service that is built using web technologies,
which serves up content using web protocols and data formats.
• A web service responds to HTTP requests! We can can HTTP as the basis

for a more generalized service protocol that can serve up a broader range
of data than just HTML.
• A service can be written in almost any language. The web server e.g.

Apache, nginx, handle the actual request and delegate work. This is just an
extension of what web servers were originally designed to do.
• We are also leveraging the ability of web servers to handle HTTP requests

efficiently, with the ability to scale to very large numbers of requests. To do
this, we need some guidelines on how to structure HTTP for generic
requests.

14

REST
Representational State Transfer (REST), is a software architectural style that
defines a set of constraints for how the architecture of an Internet-scale
system, such as the Web, should behave.
• REST was created by Roy Fielding in his doctoral dissertation in 2000^.
• It has been widely adopted and is considered the standard for managing

stateless interfaces for service-based systems.
• The term “RESTful Services” is commonly used to describe services built

using standard web technologies that adheres to these design principles.

^ Roy was also one of the principal authors of the HTTP protocol and co-founded
the Apache server project.

15

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Roy_Fielding

Key REST Principles
1. Client-Server. By splitting responsibility into a client and service, we

decouple our interface and allow for greater flexibility.
2. Layered System. The client has no awareness of how the service is

provided, and we may have multiple layers of responsibility on the server.
i.e. we may have multiple servers behind the scenes.

3. Stateless. The service does not retain state i.e. it's idempotent. Every
request that is sent is handled independently of previous requests. That
does not mean that we cannot store data in a backing database, it just
means that we have consistency in our processing.

4. Cacheable. With stateless servers, the client has the ability to cache
responses under certain circumstances which can improve performance.

5. Uniform Interface. Our interface is consistent and well-documented. Using
the guidelines below, we can be assured of consistent behaviour.

16

Request Methods
For your service, you define one or more HTTP endpoints (URLs). Think of an
endpoint as a function - you interact with it to make a request to the server. e.g.,
https://localhost:8080/messages
https://cs.uwaterloo.ca/asis

To use a service, you format a request using one of these request types and send
that request to an endpoint.
• GET: Use the GET method to READ data. GET requests are safe and idempotent.
• POST: Use a POST request to STORE data i.e. create a new record in the database,

or underlying data model.
• PUT: A PUT request should be used to UPDATE existing data.
• DELETE: Use a DELETE request to delete existing data.

17

https://localhost:8080/messages
https://cs.uwaterloo.ca/asis

API Guidelines
1. When defining endpoints, use nouns over verbs, plural over singular form. e.g.

• GET /customers should return a list of customers
• GET /customers/1 should return data for Customer ID=1.

2. Use JSON as the data format. i.e. send and receive JSON objects.
3. Be consistent

• If you define a JSON structure for a record, you should always use that structure: avoid doing
things like omitting empty fields (instead, return them as named empty arrays).

18

Communication Models
For maximum flexibility, we need to support two different models:
• Bidirectional communication: either one can initiate, and the other responds.
• Unidirectional communication: the client initiates and the service responds.

19

Unidirectional: must be initiated by the
client.

Bidirectional: can be initiated by either
client or server.

Using services with Ktor
Accessing services, or creating your own!

20

What is Ktor?

Ktor is an application framework for building networked applications.
It’s also developed and supported by JetBrains.
• https://ktor.io/docs/welcome.html
• https://ktor.io/docs/creating-http-apis.html#prerequisites

• You can use it for anything network and service related. e.g., fetch a
web page; connect to a service using HTTP requests (GET, POST).
• You can use it on the client side (to make application requests) or to

build a web service (which handles GET/POST requests for clients).

21

https://ktor.io/docs/welcome.html
https://ktor.io/docs/welcome.html
https://ktor.io/docs/creating-http-apis.html
https://ktor.io/docs/creating-http-apis.html
https://ktor.io/docs/creating-http-apis.html
https://ktor.io/docs/creating-http-apis.html
https://ktor.io/docs/creating-http-apis.html
https://ktor.io/docs/creating-http-apis.html

Client: Request

22

How do we make requests to a service? Kotlin includes libraries that allow you to structure and
execute requests from within your application. e.g., fetches the results of a simple GET request:

 val response = URL(“https://google.com").readText()

The HttpRequest class uses a builder to let us supply as many optional parameters as we need:

fun get(): String {
 val client = HttpClient.newBuilder().build()
 val request = HttpRequest.newBuilder()
 .uri(URI.create("http://127.0.0.1:8080"))
 .GET()
 .build()

 val response = client.send(request, HttpResponse.BodyHandlers.ofString())
 return response.body()
}

Client: Sending Data

23

Here’s a POST method that sends an instance of our Message class to the service that we’ve defined
and returns the response. We use serialization to encode it as JSON.

fun post(message: Message): String {
 val string = Json.encodeToString(message)

 val client = HttpClient.newBuilder().build();
 val request = HttpRequest.newBuilder()
 .uri(URI.create("http://127.0.0.1:8080"))
 .header("Content-Type", "application/json")
 .POST(HttpRequest.BodyPublishers.ofString(string))
 .build()

 val response = client.send(request, HttpResponse.BodyHandlers.ofString());
 return response.body()
}

Creating a Ktor Project
The Ultimate edition has support for Ktor.

• Install the Ktor plugin
• New project wizard
• Ktor

• Ktor version: 3.0
• Engine: Netty
• Configuration: code
• Add sample code (check)

• Plugins
• Routing (required)
• kotlinx.serialization (for JSON payloads)
• Websockets (bidirectional communication)
• Authentication - see later section

24

Server: Main Method

25

The main method launches a specific web server (Netty below) and starts listening at
the IP address and port listed. For debugging, this corresponds to 127.0.0.1:8080.
e.g.,

import io.ktor.server.engine.*
import io.ktor.server.netty.*
import com.example.plugins.*

fun main() {
 embeddedServer(Netty, port = 8080, host = "0.0.0.0") {
 configureSerialization()
 configureRouting()
 configureWebsockets()
 }.start(wait = true)
}

Server: plugins/Routing.kt (1/2)

26

Standard routing is meant for handling HTTP requests (GET, PUT, POST, DELETE) that are
initiated by the client. You create routes for each end point that you want to support.

import io.ktor.server.application.*
import io.ktor.server.response.*
import io.ktor.server.routing.*

fun Application.configureRouting() {

 routing {
 get("/") {
 call.respondText("Hello World!")
 }
 }
}

/ endpoint

Server: plugins/Routing.kt (2/2)

27

Standard routing is meant for handling HTTP requests (GET, PUT, POST, DELETE) that are initiated
by the client. You create routes for each end point that you want to support.

import io.ktor.server.application.*
import io.ktor.server.response.*
import io.ktor.server.routing.*

fun Application.configureRouting() {

 routing {
 get("/customer/{id}") {
 val id = call.parameters["id"]
 val customer: Customer = customerList.find { it.id == id!!.toInt() }!!
 call.respond(customer)
 }

 }
}

/ endpoint

https://github.com/ktorio/ktor-samples

https://github.com/ktorio/ktor-samples
https://github.com/ktorio/ktor-samples
https://github.com/ktorio/ktor-samples
https://github.com/ktorio/ktor-samples
https://github.com/ktorio/ktor-samples
https://github.com/ktorio/ktor-samples
https://github.com/ktorio/ktor-samples
https://github.com/ktorio/ktor-samples

Server: WebSockets.kt

28

WebSocket is a protocol which provides a full-duplex communication over a single TCP
connection. This is useful when you want to maintain a connection and allow either client or
server to send data (e.g. data on the server changes and you want to notify clients).

routing {
 webSocket("/echo") {
 send("Please enter your name")
 for (frame in incoming) {
 frame as? Frame.Text ?: continue
 val receivedText = frame.readText()
 if (receivedText.equals("bye", ignoreCase = true)) {
 close(CloseReason(CloseReason.Codes.NORMAL, "Client said BYE"))
 } else {
 send(Frame.Text("Hi, $receivedText!"))
 }
 }
 }
}

https://ktor.io/docs/websocket.html#websocket-api

https://ktor.io/docs/websocket.html
https://ktor.io/docs/websocket.html
https://ktor.io/docs/websocket.html
https://ktor.io/docs/websocket.html
https://ktor.io/docs/websocket.html
https://ktor.io/docs/websocket.html

