Software Engineering

CS 346 Application
Development



Software Engineering

Today we’re going to talk about the process of designing and building
software. This is a significant topic within the discipline of Software
Engineering:

“Software engineering is a branch of both computer science and
engineering focused on designing, developing, testing, and
maintaining software applications ...

A software engineer applies a software development process, which
involves defining, implementing, testing, managing, and maintaining
software systems...”

-- Wikipedia



https://en.wikipedia.org/wiki/Software_engineering

Software Projects



Software Projects

* A project is a planned activity, following a set of defined steps, which
results in some desired outcome e.g., building a fence.

» A software project is a specialized project which results in the delivery
of a software product e.g., a new release of macOS.
* Generic process, with terms and concepts adapted for software.

* Often represented as a set of linear steps, where each step must be
completed before the next one starts.

Planning —» Requirements —» Design =—» Implementation - Deployment



Steps in a Software Project

* Planning: Determining up-front costs.

* Requirements: What do we want to build? Who will buy it?

* Design: How do we build it? What constraints do we have?

* Implementation: Building it to meet project and design goals.
» Testing: Ensuring that it works as expected before we sell it.

* Deployment: Delivering to customers and getting paid.

Planning —» Requirements —» Design —» Implementation —» Testing Fb Deployment




Software Projects vs. Products

 Software production in the 1960s and 70s focused on bespoke projects:
custom software for a specific customer.

e Customers would define requirements and then engage an engineering firm to
deliver their software. These types of projects still exist e.g., banking.

 Software production since the 1980s has mostly shifted building generic
software products that are useful to a range of customers (more profit).

* Application software fits into this category and can include large-scale business
systems (e.g. MS Excel), personal products (e.g. Discord) or games (e.g. Flappy Bird).

Planning —» Requirements -—» Design =—» Implementation - Deployment

L J
Y \ v J

Who does this can vary significantly. Software engineers always do this i.e., us.




Project Development Product Development

CUSTOMER DEVELOPER
Opportunity
generates helps-with . .
inspires realizes
implemented-by
Requirements implemented-by
quiremen Product
features

CUSTOMER and DEVELOPER
DEVELOPER DEVELOPER DEVELOPER
The customer is the primary The developer decides who to target, and

driver of software requirements. what features to deliver.



Product Development

* The starting point for product development is a business opportunity
that is identified by individuals or a company.

* The company decides to develop a software product to take advantage of this
opportunity and sell this to (hopefully many) customers.

* They design and implement a set of software features that take advantage of
this opportunity and that will be useful to customers.

 All decisions are being made by the developer!

* No external customer is paying for anything (yet).

* The company is responsible for deciding on the development timescale, what
features to include and when the product should change.

* Rapid delivery of software products is essential to capture the market.



Software Process Models

Let’s think more about building products.



Software process models

The linear model we presented was a
common view of software development
until recently.

It is also known as the Waterfall Model
(Royce 1970):

* Each step is “owned” and managed by a
separate person or group.

* Each step represents significant work.
 Steps need to be performed in order.

* Gatekeeping enforced e.g., requirements
approval before design.

Project Mgmt.

Product Mgmt.

Architecture

Developers

QA

Support

Planning

v

Requirements

v

Design

v

Implementation

Deployment

12



Challenges

Project Mgmt. Planning
This model doesn’t work very well. Why? v
* Decisions made early in the process may Product Mgmt. [ Requirements
need to be revisited. e.g., customer v
requ irements. Architecture Design
* Your understanding of a problem will evolve. v

You will sometimes need to iterate to make a Developers | Implementation
final decision e.g., uncovering issues in
development that should change the design. QA

* Building silos discourages collaboration, and
leads to limited decisions e.g., QA will have Support P
insights on what designs are testable.

13



The Agile Manifesto (2001

Through this work we ‘

‘\.sf‘

RS g S N

https://agilemanifesto.org

14


https://agilemanifesto.org/
https://agilemanifesto.org/

Agile methods

* Plan-driven development evolved to support the engineering of
large, long-lifetime systems (such as aircraft control systems).
* Teams may be geographically dispersed and work on the system for years.

* This approach is based on controlled and rigorous software development
processes that include detailed project planning, requirements specification
and analysis and system modelling.

* Plan-driven development involves significant overhead, and it’s slow.

* Agile methods were developed in the 1990s to address this problem.

* These methods focus on the software rather than its documentation, develop
software in a series of increments and aim to reduce process bureaucracy as
much as possible.



Agile software engineering

» Agile software engineering focuses on:
* Rapid software development and delivery,

e Responding to changing product specifications and
* Minimizing development overhead.

* Many ‘Agile methods’ have been developed.

* There is no ‘best’ Agile method or technique.

* It depends on who is using the technique, the development team and the
type of product being developed.

* Teams often combine aspects of different models.

* Modern software development tends to be Agile.



Key concept: Incremental development

 All agile methods recognize the importance of incremental
development and delivery.

* Product development focuses on software features, where a feature
does something for the software user.

* With incremental development, you start by prioritizing the features
so that the most important features are implemented first.
* You only define the details of the feature being implemented in an increment.
* That feature is then implemented and delivered.

e Users can try it out and provide feedback to the development team.
* Use feedback to define and implement the next feature of the system.



Incremental development

Product feature list
Choose features to

be included in

If all features are Increment
complete, deliver
system felease Deliver system Refine feature
increment descriptions
Integrate feature Implement and

into system test feature

18



Incremental development activities

=1 * Choose features to be included in an increment
Using the list of features in the planned product, select those features that can be
implemented in the next product increment.

* Refine feature descriptions
Add detail to the feature d_escriPti_ons so that the team have a common understanding
of each feature and there is sufficient detail to begin implementation.

* Implement and test
Implement the feature and develop automated tests for that feature that show that its
behaviour is consistent with its description.

* Integrate features and test _ - _ _
InteEra_te he developed feature with the existing system and test it to check that it
works in conjunction with other features.

* Deliver system increment
Deliver the system increment to the customer or product manager for checking and
comments. I¥enough features have been implemented, release a version of the system
X~  for customer use.




Why Agile Processes?

Compared to plan-driven development, Agile processes:

* Involve the customer
Involve customers closely with the software development team. Their role is to
provide and prioritize new system requirements and to evaluate each increment
of the system.

* Embrace change
Expect the features of the product and the details of these features to change as
the development team and the product manager learn more about it. Adapt the
software to cope with changes as they are made.

* Develop and deliver incrementally
Always develop software products in increments. Test and evaluate each

increment as it is developed and feed back required changes to the development
team.



Agile Principles

Foundational Agile principles include:

* Maintain simplicity
Focus on simplicity in both the software being developed and in the development
process. Wherever possible, do what you can to eliminate complexity from the
system.

* Focus on people, not things
Trust the development team and do not expect everyone to always do the
development process in the same way. Team members should be left to develop
their own ways of working without being limited by prescriptive software
processes.



Extreme Programming (XP)

A foundational Agile process model.



Extreme programming (XP)

Uaninished
One of the most influential process models is A Thie
Extreme Programming (XP), designed by Kent Mogt inbortant
Beck in the late 1990s. Feaitires
Extreme programming focuses on 12 ,':‘,3’,?,22‘,2‘;
development techniques that are geared to Apro-ect\\‘
rapid, incremental software development. [ /" heartbea
Softwarg onest

* Very much concerned with improving quality- s

of-life for software developers. \Empgﬁvae'?mewj/
* Less focused on project management and ()

Daily Communication

tracking concerns.

23



Extreme programming practices

Test-first
development

Continuous

integration Refactoring

Incremental
Small

planning releases
Extreme
programming
Collective Simple
ownership design
System metaphor widely used
Pair On-site less popular

programming customer
Sustainable  Planning game

pace
24



Widely adopted practices (that we will use)

1. Incremental planning/user stories
There is no ‘grand plan’ for the system. What needs to be implemented
(the requirements) in each increment are established by the team and
customer. Requirements are written as user stories, and are priority is
determined by the time available and their relative importance.

2. Continuous integration
As soon as the work on a task is complete, it is integrated into the whole

system. All unit tests from all developers are run automatically and must
be successful before the new version of the system is accepted.

3. Test-driven development
Instead of writing code then tests for that code, developers write the
tests first. This helps clarify what the code should do and ensures that
there is always a ‘tested’ version of the code available. An automated
unit test framework is used to run the tests after every change.



Widely adopted practices (that we will use)

4. Refactoring
Refactoring means improving the structure, readability, efficiency and
security of a program. All developers are expected to refactor the code as
soon as potential code improvements are found. This keeps the code

simple and maintainable.

5. Small releases
The minimal useful set of functionality that provides value is developed
first. Subsequent releases of the system add functionality incrementally.
Small, well-tested releases provide more opportunities for feedback, and
reduce the cost of acting on that feedback.



Scrum

Another foundational Agile process model.

27



Scrum

» Software company managers need to understand how much it costs
to develop a software product, how long it will take and when the
product can be brought to market.

* Plan-driven development provides this information through long-term
development plans that identify deliverables - items the team will deliver and
when these will be delivered.

* Plans always change so anything apart from short-term plans are unreliable.

* Scrum provides a framework for agile project organization.
* It is designed around short-term planning activities.
* The assumption is that requirements and plans will change during a project!
* It does not mandate any specific technical practices.



Key Scrum concepts

* Self-organizing teams
* Self-organizing teams make their own decisions and work by discussing issues and
making decisions by consensus. No single person is “in charge”.

* Timeboxed iteration (aka “sprint”)

* The team has a fixed period (usually 2-4 weeks) where they decide on goals, select
items to work on, implement them and then demo them to a customer at the end.

* Customer feedback
* You engage the customer for informal feedback (when possible) and formal
demonstrations of work completed during an iteration.

* Work from a backlog
* Work is normally only scheduled for the next sprint; you don’t try and plan the entire
life of a product. Unscheduled work is tracked in a “backlog”.



Sprint activities

Sprint Sprint
planning backlog
Sprint
execution
Sprint

Integrate backlog

Develop
software

Sprint
review

Scrum

A sprint is 2-4 weeks in length.

* Sprint planning: set goals.

* Sprint execution: execute on goals.

* Sprint review: review the outcomes
with a customer.

30



The top five benefits of using Scrum

The product is broken

Unstable requirements down into a set of
do not hold up «<— Product » understandable chunks
progress. that stakeholders can
relate to.
Scrum
benefits
Progress People

|

Customers see on-time Team communication is Trust between

delivery of increments improved because customers and
and gain feedback on everyone can see developers is
how the product works.  everything. established and a

positive culture is

created.
32



Phase 1: Sprint planning




Sprint planning

In a sprint plan, the team decides which items in the product backlog should be
implemented during that sprint.

* Establish an agreed sprint goal. It may be focused on software functionality, support or
performance and reliability.

* Key inputs are how much work they historically get done in a sprint (velocity).

* Planning activities (next slide) help prioritize items.

The output of the sprint planning process is a sprint backlog.
* Records the work to be done during the sprint.

During a sprint, the team has regular (daily) meetings to coordinate their work.
* i.e. check-in with each other, identify problem areas.



Planning activities

You work on product backlog items (PBIs) during sprint planning.
Consider PBIs that meet your goals for the sprint.

* Creation: New items are added to the backlog. These may be new features suggested
by the customer, feature changes, engineering improvements, or process

* Refinement: Existing PBIs are analyzed and refined to create more detailed PBlIs.
e Estimation: The team estimates the amount of work required and updates online.
 Story points (arbitrary number denoting “effort”) or half-day estimates.

* Prioritization: The product backlog items may be reordered based on circumstances.

 Recommend adding a priority label (high, medium, low) to track priorities.



Phase 2: Sprint execution




Sprint execution

* Sprints are fixed-length periods (2 - 4
weeks) in which software features
are developed and delivered.

* During a sprint, the team has daily
meetings (scrums) to review
progress and to update the list of
work items that are incomplete.

* Sprints should produce a ‘shippable
product’ i.e. complete and ready to
deploy at the end of the sprint.

Start

Review
sprint

Shippable

product increment

Test
software

Review product
backlog

Product
backlog

Sprint

Sprint
backlog

Develop
software

Select items
to implement

Plan
sprint

Scrum

37



Key roles in Scrum

* Product owner

* A team member who is responsible for identifying product features and attributes.
They review work done and help to test the product.

* In product development, the product manager should normally take on the Product
Owner role.

* Scrum Master

* A team coach who guides the team in the effective use of Scrum.

* In many companies that use Scrum, the ScrumMaster also has some project
management responsibilities.

* Development team

* A small self-organising team of five to eight people who are responsible for
developing the product.



Scrums
* A scrum is a short, daily meeting that is usually held at the beginning of
the day. The goal is information sharing among team members.

 Team members share information, describe their progress since the
previous day’s scrum, problems that may have arisen and next plans.

e Scrum meetings should be short and focused. They are sometimes
organized as ‘stand-up’ meetings where there are no chairs.

e During a scrum, the sprint backlog is reviewed. Completed items are
removed from it. The team then decides if changes need to be made.



How many sprints do you need?

* Products are developed in a series of sprints, each of which delivers an increment
of the product or supporting software.
* The expectation is that you will require many sprints to complete your product.

* Sprints are short duration (1-4 weeks) and take place between a defined start and

end date.
* Sprints are timeboxed, which means that development stops at the end of a sprint

even if the work has not been completed.

* You often do not know how long unscheduled items will take to complete.
* If you need to know this, you need to plan the time to do estimates of the work!



Benefits of using timeboxed sprints

There is a tangible output (usually a software
demonstrator) that can be delivered at the end of
every sprint.

Demonstrable progress

Time-
boxing
benefits

Problem discovery Work planning
If errors and omissions are The team develops an understand-
discovered the rework required is ing of how much work they can do

limited to the duration of a sprint. in a fixed time period.

41



Phase 3: Sprint reviews




Demo to a customer

* Your sprint should always end with a demo to stakeholders
* The customer being the most important stakeholder.

* |dentify

* What your goals were for the sprint?
* Which of these goals were met (with a demonstration of functionality).

* Which goals were not met. If they weren’t met, how and when will you meet
them?
* The goal is to get feedback!
* Further refinements may be required.



Sprint retrospective

* At the end of each sprint — after the demo - there is a review meeting,
which involves the whole team. The project team should:
* Review whether the sprint has met its goal.
 Discuss any new problems and issues that have emerged during the sprint.
» Reflect on how they can improve the way they work.

* The sprint review should include a process review, in which the team
reflects on its own way of working and how Scrum has been used.

* The aim is to identify ways to improve and to discuss how to use Scrum more
productively.

* This information feeds back into the next sprint’s planning session!



Project Structure

Project Proposal

Planning
Requirements

X~

Design
Implementation
Testing

Final Release

Deployment

45



Recommended |teration Plan

Week 1 Week 2
| | |

Step 2: > Step 3: Code
Implementation Freeze

\ /

Step 1: Kickoff == =  Step 4: Demo

Sprint planning Sprint execution Sprint review
Sprint retrospective



Reference

Beck & Andres. 2004. Extreme Programming Explained. Addison-Wesley
Professional. ISBN 978-0134051994

Schwaber & Sutherland. 2020. The Scrum Guide. CC-licensed.

Sommerville. 2021. Engineering Software Products: An Introduction to Modern
Software Engineering. Pearson. ISBN 978-1292376356.

Shore & Warden. 2021. The Art of Agile Development, 2nd Edition. O’Reilly. ISBN
978-1492080695.

47


https://www.amazon.ca/Extreme-Programming-Explained-Embrace-Change-ebook/dp/B00N1ZN6C0
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://www.amazon.ca/Engineering-Software-Products-Ian-Sommerville/dp/013521064X
https://www.amazon.ca/Engineering-Software-Products-Ian-Sommerville/dp/013521064X
https://www.amazon.com/Art-Agile-Development-James-Shore/dp/1492080691

