
Requirements
CS 346 Application

Development

1

How do you begin?
Always start with a “big, ambitious idea”.

2

The starting point for product development is a ‘product vision statement’.
• Product visions statements are simple statements that define the essence of the

what you are developing.
• The product vision should answer three fundamental questions:

• What is the product that we want to develop?
• Who are the target customers / end-users?
• Why should customers buy this product, instead of a competing product?

• You should be able to articulate it in a couple of sentences, or a short paragraph -
also see elevator pitch.

• See brainstorming page on the course website

The product vision (aka “idea”)

3

https://en.wikipedia.org/wiki/Elevator_pitch
https://student.cs.uwaterloo.ca/~cs346/1261/course/getting-started/brainstorm/
https://student.cs.uwaterloo.ca/~cs346/1261/course/getting-started/brainstorm/

Examples: Vision Statement

“What’s for dinner” is a meal-planning application that takes the pain out
of deciding what to cook for people who don’t have time or energy to
meal plan! Use your phone to take a picture of your refrigerator, and our
AI agent will compile a list of quick and easy recipes that you can make
based on the ingredients you already have.

“Workout buddy” helps people who like to exercise keep track of their
routines and week-by-week progress. You use it to build a workout plan
consisting of sets, assign them to a schedule and then use it as part of
your workouts. It helps motivate you by summarizing and charting your
progress over time with fun graphics and animations.

4

• Domain experience
The product developers may work in a particular area and understand the software that
they need. They may be frustrated by deficiencies in existing software. As experts, they
are in a great position to define a problem and viable solutions.

• Product experience
Users of existing software may see simpler and better ways of providing comparable
functionality e.g., adding new features to functionality that you already use.

• Customer experience
Software developers may have discussions with prospective customers e.g., interviews to
understand the problems that they face, constraints, and attributes that they need.

• Prototyping and playing around
Developers may have an idea for software and might be involved in developing it into a
product. They may develop a prototype system as an experiment and test this prototype
with users to gauge its effectiveness.

Many paths to a product vision

5

The following template is a place to start:

FOR (target customer)
WHO (statement of the need or opportunity)
The (PRODUCT NAME) is a (product category)
THAT (key benefit, compelling reason to buy)
UNLIKE (primary competitive alternative)
OUR PRODUCT (statement of primary differentiation)

Format? Use Moore’s vision template

6

See Geoffrey Moore. Crossing the Chasm. 1991

Example for an enterprise product that tracks sales and leads.

FOR a mid-sized company's marketing and sales departments
WHO need basic customer-tracking functionality,
THE Sales-Tracker is a Web-based service
THAT provides sales tracking, lead generation, and sales representative
support features to improve customer relationships.
UNLIKE other services or package software products,
OUR product provides very capable services at a moderate cost.

Example: vision template

7

8

Your vision statement should be the foundation of the rest of
what you do; it should clearly express what your product does
and what purpose it serves.

Even when you pivot (or drop features or add features) it
should always be in service of this vision statement.

It’s also intentionally broad in focus. We need to build on it
before we start designing anything.

Developing requirements
Expand your product vision to define a compelling product.

9

• These drive the design of software products:
• Business and consumer needs that are not met by current products.
• Dissatisfaction with existing software products, business or personal.
• Changes in technology that make completely new types of product

possible.

• In the early stages, you want to understand:
• Who are your users, and what needs are not being met.
• What product features address their dissatisfaction, and
• What they like and dislike about the products that they use? What

improvements can we make to existing solutions?

Software products

10

• It makes sense in any product development to spend time trying to
understand the potential users and customers of your product.
• A range of techniques have been developed for understanding the

ways that people work and use software.
• These include user interviews, surveys, ethnography and task analysis.
• Some of these techniques are expensive and unrealistic for small companies.

• Informal user analysis and discussions, which simply involve asking
users about their work, the software that they use, and its strengths
and weaknesses are inexpensive and very valuable.
• Let’s formalize our approach.

Understanding users

11

User-Centered Design

User-centered design focuses on identifying and meeting a user’s needs.
• Process that considers user requirements throughout the product cycle.
• Based on work by Rob King (1977) and Don Norman (1986).

We’ll use three core concepts from UCD to help us define our features.
• Personas: an abstract representation of a user of a system.
• Scenarios: a high-level description of how a system will be used.
• User Stories: brief, informal descriptions of software features told from the

perspective of the end-user.

We can use each of these to help us decide what product to build, and what
features will be most useful.

12

https://en.wikipedia.org/wiki/User-centered_design
https://en.wikipedia.org/wiki/User-centered_design
https://en.wikipedia.org/wiki/User-centered_design

A way of representing users

Natural language descriptions of a user
interacting with a software product

Natural language descriptions of
something that is needed or wanted by
users

The core of user-centred design is developing stories that describe
how users interact with your product (Sommerville 2021). 13

What we build

UCD: Personas
Characterizing your users.

14

• You need to understand your potential users to design features that
they are likely to find useful and to design a user interface that is suited
to them.
• Personas are ‘imagined users’ where you create a character portrait of

a type of user that you think might use your product.
• For example, if your product manages appointments for dentists, you might

create a dentist persona, a receptionist persona and a patient persona.

• Personas of different types of user help you imagine what these users
may want to do with your software and how it might be used.
• Create personas to reflect different aspects of your software.
• Anticipate problems from the POV of each persona.

Personas

15

Persona: Jack

Jack, age 32, is a primary school (elementary school) teacher in Ullapool, a large
coastal village in the Scottish Highlands. He teaches children from ages 9-12. He
has a degree in English from Glasgow University and retrained as a teacher after
several years working as a web content author for a large leisure group.

Jack’s experience as a web developer means that he is confident in all aspects of
digital technology. He passionately believes that the effective use of digital
technologies, blended with face-to-face teaching, can enhance the learning
experience for children.

Concerned with educational software, in-class
use, casual programming.

16

Persona: Elena

Elena, age 28, is a senior IT technician in a large secondary school (high school)
in Glasgow with over 2000 students. She was originally appointed as a junior
technician but was promoted, in 2014, to a senior post responsible for all the
school computers.

Although not involved directly in teaching, Elena is often called on to help in
computer science classes. She is a competent Python programmer and is a
‘power user’ of digital technologies. She has a long-term career goal of
becoming a technical expert in digital learning technologies and being involved
in their development.

Concerned with educational software, installation,
maintenance, programming/customization.

17

Personas don’t need to be narrative! Some people find summary cards like this more useful when brainstorming.
Choose whichever style you find helpful. Just make sure that it addresses your user’s goals and motivations.

18

A persona should ‘paint a picture’ of a type of product user. They should be
relatively short and easy-to-read but still describe goals and motivation.
A persona should help you assess whether a software feature is likely to be useful,
understandable and usable by this type of user.
• Include expected background and why they might use your product.
• Personas should also include expected educational background and technical

skills, as they relate to the problems you are examining.

It’s not uncommon to need multiple personas, reflecting different types of users.
There may be a primary or secondary personas that utilize different parts of your
product.

What makes a persona useful?

19

What to include in a persona (Sommerville 2021).
20

• The main benefit of personas is that they help you and other
development team members empathize with potential users of the
software.
• Personas help because they are a tool that allows developers to "step

into the user’s shoes”.
• Instead of thinking about what you would do in a particular situation, you can

imagine how a persona would behave and react.
• Check your ideas to make sure that you are not including product features

that aren’t really needed.
• They help you to avoid making unwarranted assumptions, based on your own

knowledge, and designing an over-complicated or irrelevant product.

Benefits of using personas

21

UCD: Scenarios
A high-level description of how your system will be used.

22

• A scenario is a narrative that describes how a user, or a group of
users, might use your system.
• There is no need to include everything in a scenario

• The scenario isn’t a complete system specification.
• It’s a description of a situation where a user is using your product’s features

to do something that they want to do.

• Scenario descriptions may vary in length from two to three
paragraphs up to a page of text.

Scenarios

23

Scenario: collecting photos for a class project

Jack is a primary school teacher in Ullapool, teaching P6 pupils. He has decided that a class project
should focus on the local fishing industry, including its history, development and economic impact.
As part of this, students are asked to gather and share reminiscences from relatives, use newspaper
archives and collect old photographs related to fishing and fishing communities in the area. Pupils
use an iLearn wiki to gather fishing stories and SCRAN (a history archive site) to access newspaper
archives and photographs.
However, Jack also needs a photo-sharing site as he wants students to upload scans of old
photographs that they may have in their families. He needs to be able to moderate posts with
photos before they are shared.
Two teachers from a primary school teacher’s group suggest that he uses KidsTakePics, a photo-
sharing site that allows teachers to check and moderate content. He uses the the iLearn setup
service to add KidsTakePics to the services seen by the students in his class so that, when they log in,
they can immediately use the system to upload photos from their phones and class computers.

24

Structure of a scenario

What to include in a scenario (Sommerville 2021).
25

• A brief statement of the overall objective. e.g., supporting class projects.
• References to the personas involved (e.g., Jack, Elena) so that you can get

information about the capabilities and motivation of that user.
• Information about what is involved in doing the activity. e.g., in Jack’s scenario

this involves gathering reminiscences from relatives, accessing newspaper
archives, etc.

• An explanation of problems that can’t be addressed using the existing system.
• Photos need to be vetted by teachers due to copyright concerns.

• A description of a potential solution that would be acceptable to stakeholders.
• e.g., in Jack’s scenario, the preferred approach is to design a tool for school

students.

Scenario elements

26

• You should normally try to imagine several scenarios from each
persona, to cover everything that they might do.
• Every person should appear in at least one scenario.
• You will often have multiple personas, interacting.
• Personas may have different or even conflicting interests and involvement!

• Write scenarios from the perspective of the personas.
• Scenarios should be general and should not include implementation

information from the developer’s perspective
• However, describing a possible implementation from the user’s point of view

may be the easiest way to explain how something should be done.

Writing scenarios

27

UCD: User Stories
Descriptions of low-level system usage, from the perspective of a user.

28

• Scenarios are high-level stories of system usage. They describe context.
• User stories are finer-grain narratives that set out in a more detailed and

structured way a single thing that a user wants from a software system;
they emerge from scenarios.

• Standard format of a user story:
• As a <role>, I <want | need> to <do something>
• e.g., As a student, I need to be able to upload photos that I have found.

• A variant of this standard format adds a justification for the action:
• As a <role> I <want | need> to <do something> so that <reason>
• e.g., As a teacher, I need to be able to report who is attending a class trip so that the

school maintains the required health and safety records.

Next: User Stories

29

User stories from Emma’s earlier scenario
30

• In Scrum, your product backlog is a collection of user stories.
• User stories should focus on a clearly defined system feature or aspect of a

feature that can be implemented within a single sprint.
• During planning activities, you can expand into features aka issues.
• You are always working towards addressing the features for a user story.

• If the story is about a more complex feature that might take several
sprints to implement, then it is called an epic.
• e.g., As a system manager, I need a way to backup the system and restore

either individual applications, files, directories or the whole system.
• There too much functionality associated with this user story!
• It should be broken down into simpler stories with each story focusing on a

single aspect of the backup system, which can then be implemented.

User stories in planning

31

“If can express all the functionality described in a scenario as user stories,
do you really need scenarios?” (yes, you do)

Scenarios are helpful as a starting-point for the following reasons:
• Scenarios read more naturally because they describe what a user is doing with that

system. People often find it easier to relate to this style of narrative.
• Scenarios often provide more context - information about what the user is trying

to do and their normal ways of working. You can do this in user stories, but it
means that they are no longer simple statements about the use of a system
feature.

Stories and scenarios

32

Feature Identification
Implementation details derived from user stories.

33

• Your actual goal in the initial stages of product design should be to create a list of
user stories, which contain the features that define your product.
• Each user story contains 1 or more features.
• You aim to complete the entire user story by delivering all of the features.

• Features should be independent, coherent and relevant:
• Independence: Features should not depend on other system features outside

of the user story. Within a user story they may be related.
• Coherence: Features should be linked to a single item of functionality, and

they should never have side-effects.
• Relevance: Features should reflect the way that users normally carry out

some task. They should not provide obscure functionality.

Feature identification

34

Feature definition requires knowledge
from each of these areas.

• User knowledge: User scenarios and user
stories inform the team.
• Product knowledge: Investigate existing

products as part of your development
process e.g., work with existing features.
• Domain knowledge: Innovation requires

understanding the problem domain e.g.,
finance, event booking.
• Technology knowledge: New products often

emerge to take advantage of technological
developments since their competitors
launched.

Source of feature details?

35

You probably can’t do everything that you have
identified; watch for conflicting requirements.
• Simplicity and functionality: Balance a

simple, easy-to-use system against adding
more functionality to attract users.

• Familiarity and novelty: Users value
familiarity, but they also want new features
i.e., things your competitors may do. You
need to balance familiarity with added
complexity.

• Automation and control: Some users like
automation, where the software does things
for them. Others prefer to have control or
provide more input into automation.

Warning: design involves trade-offs

There are always design tradeoffs!

36

Features should always contain a description of that feature. Constraints should
be included when relevant i.e., restrictions, or dependencies on other features.

37

• Scenarios and user stories should always be your starting point for identifying
product features.
• Scenarios tell you how users work now. They don’t show how they might

change their way of working if they had the right software to support them.
• Stories and scenarios are ‘tools for thinking’ and they help you gain an

understanding of how your software might be used. You can identify a feature
set from stories and scenarios.

• User research, on its own, rarely helps you innovate and invent new ways of
working.

• You should also think creatively about alternative or additional features that help
users to work more efficiently or to do things differently.

Innovation and feature identification

38

Reference

• Sommerville. 2021. Engineering Software Products: An Introduction to Modern
Software Engineering. Pearson. ISBN 978-1292376356.

• Shore & Warden. 2021. The Art of Agile Development, 2nd Edition. O’Reilly. ISBN
978-1492080695.

39

https://www.amazon.ca/Engineering-Software-Products-Ian-Sommerville/dp/013521064X
https://www.amazon.ca/Engineering-Software-Products-Ian-Sommerville/dp/013521064X
https://www.amazon.com/Art-Agile-Development-James-Shore/dp/1492080691

