
Tracking Requirements
CS 346 Application 

Development

1



We’re collecting a lot of information
From project planning (given), you can identify:
• Project resources: who is on the project?
• Milestones: deadlines we need to meet.

From requirements, you should have:
• Personas: an abstract representation of a user 

of a system.
• Scenarios: a high-level description of how a 

system will be used.
• User Stories: brief, informal descriptions of 

software features told from the perspective of 
the end-user.

2

Project details need to 
be tracked. These are 
mostly provided for you 
in the project 
requirements.

These are determined 
through discussion and 
information gathering. 
These also represent 
work that you need to 
track all-term.



We need to track what we’re doing
Why track this?
• We need a log of what has been done (good/bad).
• Helps us plan and coordinate work around the team.

We want to track
• What we have done before
• What we are working on now
• What we need to do in the future

We will track progress against user stories.
• The best reflection of what “needs to be done” for our product to be useful.
• Focus on “how features work together to address problems”.
• Focus on “meaningful progress” vs “getting things done”.

3

User stories 
represent features 
that need to work 

together to be 
useful. 



Project Details
How to track high-level project goals and deadlines.

4



What is a milestone?

• A milestone is a goal that you want to achieve in your project.
• Your project will likely have many milestones!

• Internal: getting a library complete so another team can use it. 
• External: getting a release ready to demo features to a user. 

• For each milestone, you should track:
• The date when you need to achieve it.
• A description of the high-level goal that you need to achieve.
• A list of tasks. These can be features from your requirements, or other 

tasks that need to be completed.
• Some acceptance criteria i.e., a way to know that you have met the 

goal.
5



Example: customer demo

A typical external milestone would be a trade show demo for a customer. e.g.,

Milestone:
• Trade Show Demo

Deadline:
• The day before you travel to the conference.

Goals: 
• The features that you intend to deliver to the customer are complete and tested.
• Your computer has the release installed and is setup with sample data.
• You have a glossy marketing brochure and price sheet that you can give them.

Acceptance: 
• Demonstrate the demo running on your notebook, with sample data, by the deadline.

6



Milestones in this course

You have been given project deadlines aka milestones.
• Project proposal: describe your vision, requirements.
• Sprint 1: user interface (incomplete)
• Sprint 2: domain layer, user interface wired up.
• Sprint 3: data layer, can use “real data” from a database.
• Sprint 4: final release, all features complete.
• Final submission: documentation, video.

Each of these has a deadline, and a high-level goal.
We can track details in our GitLab project.

7



8

Repeat for every deadline in the project. 

Plan > Milestones in 
your GitLab project.



9

Milestones represent deadlines that we want to achieve. We assign work 
(issues) to milestones and use them to track progress.

We ultimately want milestones for each of our deliverables, with work assigned to each one.



What to add first?

• Add milestones for each of your project deliverables.
• Date is the demo data from the course schedule.
• Goal is the goal described in the project milestone document.

• e.g., Team Project > Milestones > Proposal on the course website.

• You can add any work that you anticipate to each milestone.
• However, most of the tasks that you will assign will be taken from your 

requirements (proposal). 

• Let’s talk more about adding tasks to our milestones.

10



Tasks (aka Issues)
Work items that we assign to our milestones.

11



What is an issue?
• An issue is a unit of work.

• Used to be called “bugs”; now we talk about “issues” as a more generic term.
• An issue should represent about ½ a day work for one person.
• Can be any work that needs to be done for a milestone.

• When do you create them?
• As part of your requirements, prior to starting work.
• When you identify something else that needs to be done, that you aren’t 

already tracking. 
• Examples

• Issue: “create new Android project.”
• Issue: “setup Supabase tables to match our local schema.”
• Issue: “implement new auth mechanism for the login user story.”

12



13

The Life of an Issue in GitLab



14

Plan > Issues in 
GitLab.

optional

assign during 
planning

tags
high/low



15

Issue boards are useful for reviewing and assigning work.
You will use these in demos as well.



What do you put in issues?
How to organize your work

16



What you need to do:

We typically track progress against user stories.
1. For each user story, create an issue in GitLab.
2. Within the issue that you’ve created, add sub-issues for each individual 

feature that you might deliver. 
3. Add details to the feature.
4. Decide when you will start the user story and assign it to a sprint.

You do not need to complete an entire user story in one sprint! 
• Assign work by sub-tasks.
• Multiple people can work on the same user story this way.

17



18

A User Story with four sub-tasks that could be spread around the team. 
The entire user story should be delivered as a working feature in Sprint 1.

optional

optional



When should you have this done?
• For your GitLab setup (Week 02):

• Milestones created (proposal/sprints 1-4).
• Priorities created (high/med/low).

• For your project proposal (Week 04)
• A list of personas, user stories and requirements (in your wiki/proposal)
• Issues created for all user stories (completed, in GitLab).
• Sub-tasks for your first sprint (completed but can be unassigned in GitLab).

• For your first sprint (Week 06).
• Sub-tasks assigned and mostly closed. 

19


