Documentation

CS 346: Application
Development



Writing code isn’t enough

We want to build maintainable software, that can be modified, update and
remain useful over a long period of time.

However, writing well-structured code isn’t enough!
* The person writing the code may not be the person maintaining it.

* Even if you are maintaining code that you wrote, you will not remember
the reasons for design decisions you made 6+ months ago.

* Code isn’t accessible to everyone in your organization! What about sales?
Marketing? You can’t expect them to “read the source code” to understand
how something works.

Documentation is essential for long-lived projects.
Effective documentation is critical for the communication of complex ideas.



Types of documentation

Project documentation

Tracking project details to help us remember our project constraints. Useful for
planning later phases. e.g., Issues lists; Milestones; Project plans; Gantt charts.

Design documentation

Why we made specific design decisions; materials to help new developers
understand rationale. e.g., UML diagrams; design documents.

Code documentation

Inline documentation (code comments) to explain peculiarities of an
implementation.

User documentation

Help users understand how something works! e.g., how to install; what features
exist; what has changed in a new release.



Docs as Code

Documentation as Code (Docs as Code) is the philosophy that
you should be writing documentation with the same tools you
use to author and maintain code.

* |ssue tracking — use this to track doc changes.

 Version control (Git) — version your docs with your code.

e Prefer plain text documents — you can diff them, use Git.

e Code reviews —docs should be included in feature reviews.
* Automated tests — unit test your docs!

“This [also] means following the same workflows as
development teams and being integrated in the product team.
It enables a culture where writers and developers both feel
[collective] ownership of documentation and work together to
make it as good as possible.”

WRITE THE

DOCS

www.writethedocs.org

4


https://www.writethedocs.org/guide/docs-as-code/

Markup Languages (Markdown)



What is a markup language?

A markup language is a system of annotating a document to describe its structure
and presentation. It uses tags or codes to define elements such as headings,
paragraphs, lists, images, links, and more. Examples include HTML, AsciiDoc,
reStructuredText and Markdown.

<!DOCTYPE html>

<html> * o
<bodys My First Heading
<h1>My First Heading</h1l> My first paragraph.

<p>My first paragraph.</p> e item 1

<ul> e item 2
<li>item 1</1i>
<li>item 2</1i>

</ul>

</body>
</html>

HTML is useful, but do you really want to write your docs in it?


https://developer.mozilla.org/en-US/docs/Web/HTML
https://asciidoc.org/
https://docutils.sourceforge.io/rst.html
https://www.markdownguide.org/

What is Markdown?

Markdown is a simple markup language that allows you to add
formatting elements to a text file. Markdown was designed with a focus
on generating HTML (see this blog post from 2004).

In its original form, Markdown is both:
* A formatting specification, and
* A tool for converting markdown files to HTML for publication.

In recent years, Markdown has become the defacto standard for
technical documentation. It is less complete than other markup
languages (e.g., AsciiDoc) but is simpler to use.


https://daringfireball.net/projects/markdown/

Using mdbook
See the [mdbook guide](https://rust-
lang.github.io/mdBook/for_developers/index.html)
for information on using ’

Using mdbook
See the mdbook guide » for information on using mdbook .

There are several methods for navigating through the chapters of a
There are several methods for navigating through book.

the chapters of a book.
» The sidebar on the left provides a list of all chapters. Clicking on

* The sidebar on the left provides a list of all any of the chapter titles will load that page.
chapters. Clicking on any of the chapter titles will » The arrow buttons at the bottom of the page can be used to
load that page. navigate to the previous or the next chapter.

* The arrow buttons at the bottom of the page can
be used to navigate to the previous or the next
chapter.

This site supports the following keyboard shortcuts:

Arrow-Left :Navigate to the previous page.

Arrow-Right : Navigate to the next page.
This site supports the following keyboard shortcuts: ¥ 9 Pag

t : Jump to the top of the current page.

. . . s :Jump to the search bar ( ESC to cancel).
: Navigate to the previous page.

“: Navigate to the next page.
"1 Jump to the top of the current page.
< Jump to the search bar ("F5C" to cancel).

* ¥ ¥ ¥

The course website is generated from Markdown! It’s
also used for documentation on GitLab, GitHub etc.




Basic Syntax

Symbol
#

H#

HHH

*text*
_text_
*Etext**

* item

1. item
(title)[URL]
I(title)[URL]

Heading 1
Heading 2
Heading 3
Emphasis
Emphasis alt.
Embolden
Bulleted list
Numbered list
Link to a URL

Embed an image

Why would we use Markdown?

* You can write documentation in any text editor.
* Text, so you can version control it, diff it etc.

* VS Code, most IDEs, GitHub, GitLab support it.
* Defacto standard for software development.

Why not use Markdown?
* There is no standard specification (GitHub and a
few organizations have produced extensions).
* Missing support for important features:
* Footnotes
* References
* Floating images
* Columns
* Works best at generating simple-HTML docs.



How do | use it?

* Editing Markdown
* VS code, Intelli)J IDEA and most editors have support for Markdown.

* Integrating into your code/documents:

* Online sites like GitLab, GitHub have built-in supporti.e., you can enter text as
markdown, and it will be shown “pretty-printed” when possible.

* You can even embed diagrams into MD in your code projects!

* Generating HTML?
* Tools like ‘pandoc” and ‘Marked" can convert markdown to HTML.

* Static site generators: Jekyll, Hugo, Retype all generate websites from
markdown.



mm list v

Project - [ Mainkt (& DBStorage.kt M+ readme.md
v C3mm ~/Source/cs346/public/mm 1 l mainmemory (mm) 292 ~ v
> [3 kotlin
> Cgconsole Multiplatform TODO application for use in CS 346. MainMemer (mm)
e deskiop (c) 2024 Jeff Avery
> [Dgradle Multiplatform TODO application for use in CS 346. (c) 2024 Jeff Avery
> [3 mobile
> Cgshared ## Team Details
@ .gitignore Team Details
&2 build.gradle.kts ### Members
ggra::e.properties * Jeff Avery (jeffery.avery@uwaterloo.ca) Members
gradlew . . .
= gradiew.bat * Caroline Kierstead (ctkierstead@uwaterloo.ca) + Jeff Avery (jsffery.avery@uwaterloo.ca)
@3 local.properties « Caroline Kierstead (ctki ca)
£ mm.png ### Contract
mireadme.md * We agree to attend all scheduled classes (Wed and Fri  Contract

&2 settings.gradle.kts
(th External Libraries
=° Scratches and Consoles

* We will also meet every Thurs night @7PM in the loung

We agree to attend all scheduled classes (Wed and Fri, at scheduled times).

* In cases of disagreement, we will attempt to compromi We will also meet every Thurs night @7PM in the lounge to review our progress before a demo.

* We will communicate over MS Teams exclusively. We wil Features should be complete before this meeting.
« In cases of disagreement, we will attempt to compromise. If that is not possible, Caroline is
& right.
## Code Details * We will i over MS Teams ively. We will also use MS Teams to book all
The project is split into 4 main modules: meetings.

* ‘console’: console-application with clikt
“desktop-gui’: compose desktop application

Code Details

*
[> * “mobile : android mobile application
* “shared’: shared entities and data model The project is split into 4 main modules:

console : console-application with clikt

## Project Links desktop-gui : compose desktop application

* [Project proposall(...) - submitted Sept 13, 2024

* Design proposal - in progress

> mobile :android mobile application
shared : shared entities and data model

* Meeting minutes - weekly minutes

Project Links

## Planned Features

* Desktop GUI client and CLI for Windows, Linux, macO0S. * Project proposal - submitted Sept 13, 2024
s i « Design proposal - in progress
* Create new notes; Display a Llist; Delete note. on prop progres
* Meeting minutes - weekly minutes
o Camt i dakn Amankad  nama An bl maniia S FVRPUNEN
omm > Mireadme.md 11 @ LF UTF-8 4spaces @ 0O

Most development tools will work with Markdown. IntelliJ IDEA for example
has support for Markdown syntax and will even pretty-print the output.



Tools > Mermaid.js

How do we generate diagrams-as-code?



Diagramming

 Documentation requires diagrams.

 We can imagine adding many different types of diagrams and charts
to our documentation, including:

Gantt charts to project management documents.
Timeline charts to show milestones and your delivery schedule.

UML diagrams for design, and to document implementation details.
* Component diagrams, class diagrams, sequence diagrams, state diagrams...
Flowcharts, and requirements diagrams to explain features to customers.

Pie charts to show results.



Diagramming Tools

There are many types of diagramming tools:

1. Pixel manipulation tools
* Produce image formats e.g., PNG. Poor for diagrams; large files, don’t scale well.

2. Vector drawing tools
* Produce SVG files or a similar format, which you can embed as images.
* Very precise; complete control over the results!
* e.g., Affinity Designer, Adobe lllustrator

3. Markup-based drawing tools
* You use a markup language to describe your diagram.

* Adiagram “engine” decides on format, layout etc., so it’s less precise.
* e.g., PlantUML, Mermaid.js



https://affinity.serif.com/en-gb
https://www.adobe.com/ca/products/illustrator.html
https://plantuml.com/
https://mermaid.js.org/

Mermaid.js

Mermaid is a JavaScript based diagramming and charting tool that

renders Markdown-inspired text definitions to create and modify
diagrams dynamically.

-- Mermaid.js.org

Mermaid supports a HUGE range of diagrams, including all UML diagrams, project charts, etc.

15


https://mermaid.js.org/intro/

Mermaid.js Diagram Syntax

" "mermaid
flowchart Start  [—*  Stop
LR Start --> Stop

" mermaid
erDiagram o
CUSTOMER ||--o{ ORDER : places ’
ORDER ||--1{ LINE-ITEM : contains

CUSTOMER }|..|{ DELIVERY-ADDRESS : uses

ORDER
contains

LINE-ITEM

CUSTOMER

uses
\

/:\
\

DELIVERY-ADDRESS

16



CUSTOMER

string | name

string | custNumber

string | sector

places

ORDER

int orderNumber

string | deliveryAddress

contains

LINE-ITEM

string | productCode

int quantity

float | pricePerUnit

er diagram

Moving

T

Crash

state diagram

Pets adopted by volunteers

Dogs
cats
Rats

pie chart

can fly

can swim

can dive

can help in debugging

Duck

+String beakColor

+swim()
+quack()

From Duck till Zebra

Animal

+int age
+String gender

+isMammal()

+mate()

)

Fish Zebra

-int sizelnFeet

+bool is_wild

-canEat() +run()

class diagram

Adding GANTT diagram functionality to mermaid

Asection

Completed task in the critical lise
Inglerren

Future tak

[

Creicyl ks

Descrive gantt sptan

Documencation ‘

Last section

Mena? PUTRTE s

W01

4534 gankt dlagram to demo pog
2031 arceder diagran 1o dens page

e e

Wamas W17 w4919

Gantt chart

W n

L33 garet chagram to dermo poge

A3 arcrher digram to dene page

Matn 23

s [

%mmmw

See Mermaid.js
documentation for

examples

API

Storage Storage

Men s e 27

17


https://mermaid.js.org/intro/
https://mermaid.js.org/intro/

Mermaid.js + Markdown

* Most environments that support Markdown also support Mermaid.
 This includes GitLab, GitHub, VS Code, IntelliJ IDEA, pandoc, ...

mermaid BankAccount
classDiagram
class BankAccount +String owner
BankAccount : +String owner +Bigdecimal balance

BankAccount : +Bigdecimal balance
BankAccount : +deposit(amount)
BankAccount : +withdrawal(amount)

+deposit(amount)

+withdrawal(amount)

You can wrap Mermaid expressions in code blocks in your Markdown documents, and
they will be rendered inline. This works in GitLab too!



22 A v

## Design
> You need the JetBrains Mermaid plugin installed

* %*xDependencies*x: flow from View (top) to Model
* *%Data flowxx: notifications flow bottom to top

*“mermaid
classDiagram
View "1" ..> "1" Controller

Controller "x" ..> "1" Model

ISubscriber "1" <|.. "1" ViewModel
IPublisher <|.. Model
ISubscriber "x" <.. "x" IPublisher

View "1" <-- "1" ViewModel
ViewModel "x" <-- "x" Model

class View {
-Controller controller
-ViewModel viewModel

class ISubscriber {
<<Interface>>
+update()

® 1.£. AUUEU UIIKL SUPpPUIL. AUUEU VEISIVIN Calaivy.
« 1.3. Desktop GUI support. Split project into modules.
* 1.4. Android support. Added mobile project.

Design
You need the JetBrains Mermaid plugin installed to show this diagram.

« Dependencies: flow from View (top) to Model (bottom).
« Data flow: notifications flow bottom to top via interfaces.

View «Interface»

-Controller controller ISubscriber

-ViewModel viewModel

<7 +update()

b %S
U 1 1 *
g ;
ViewModel | 1 «Interface»
Controller
. X IPublisher
-View view
+Model model
-Model model -List<Subscriber> subscribers
+invoke(Event)
+update() +notify()
“\\\1 T' “",—"'
A Model
+var data

+subscribe(ISubscriber)

+unsubscribe(ISubscriber)

Most tools support Mermaid diagrams in Markdown documents. IntelliJ
IDE above shows this diagram inline with Markdown documentation.




Tools > Figma

Generating screen mockups



Prototyping

A prototype is a mock-up of your solution, that is built to demonstrate
functionality and elicit feedback from your users.

* Helps you determine
* Which features are interactive, and how the user can utilize them.
* What input is required for a screen, what output makes sense.
* The order of screens! How the user will navigate (does it make sense?)

e Useful to show to your user and walk through all the features to get
initial “buy in”.

* You will not get everything right! The goal is early feedback from
users.



Fidelity

Fidelity refers to the level-of-
detail.

Low-fidelity prototypes are
deliberately simple, low-tech,
and represent a minimal
investment.

* You can sketch on paper.

. Mar:jy online tools help you
build wireframe diagrams that
you can demo e.g., Figma.

* Higher fidelity can be semi-
interactive to test progression
through the interface.

CTA

sl

Low Medium
X

spacestuff

High

The first launch of the Spa
of ed ¢ p )

22



Figma

Figma is a very popular prototyping
tool (desktop, mobile, web).

* Mock screens & interactions.

* Can build specific Ul designs (e.g.,
iPhone, iPad, desktop).

* lteration is much easier compared
to paper prototyping.

Other options

* Omnigraffle (mac)

* Balsamiqg (win, mac, web)
* Hand-drawn diagrams

Testimonials

uuuuuu

eeeeeeee

https://www.figma.com/

The largast commmu

23


https://www.figma.com/
https://www.figma.com/
https://www.figma.com/

