
Documentation
CS 346: Application

Development

1

Writing code isn’t enough
We want to build maintainable software, that can be modified, update and
remain useful over a long period of time.
However, writing well-structured code isn’t enough!
• The person writing the code may not be the person maintaining it.
• Even if you are maintaining code that you wrote, you will not remember

the reasons for design decisions you made 6+ months ago.
• Code isn’t accessible to everyone in your organization! What about sales?

Marketing? You can’t expect them to ”read the source code” to understand
how something works.

Documentation is essential for long-lived projects.
Effective documentation is critical for the communication of complex ideas.

2

Types of documentation
Project documentation

Tracking project details to help us remember our project constraints. Useful for
planning later phases. e.g., Issues lists; Milestones; Project plans; Gantt charts.

Design documentation
Why we made specific design decisions; materials to help new developers
understand rationale. e.g., UML diagrams; design documents.

Code documentation
Inline documentation (code comments) to explain peculiarities of an
implementation.

User documentation
Help users understand how something works! e.g., how to install; what features
exist; what has changed in a new release.

3

Docs as Code
Documentation as Code (Docs as Code) is the philosophy that
you should be writing documentation with the same tools you
use to author and maintain code.
• Issue tracking – use this to track doc changes.
• Version control (Git) – version your docs with your code.
• Prefer plain text documents – you can diff them, use Git.
• Code reviews – docs should be included in feature reviews.
• Automated tests – unit test your docs!

“This [also] means following the same workflows as
development teams and being integrated in the product team.
It enables a culture where writers and developers both feel
[collective] ownership of documentation and work together to
make it as good as possible.”

4

www.writethedocs.org

Docs as code does NOT
mean that “your code
is the documentation”.

https://www.writethedocs.org/guide/docs-as-code/

Markup Languages (Markdown)
Authoring documents using plain text.

5

What is a markup language?

A markup language is a system of annotating a document to describe its structure
and presentation. It uses tags or codes to define elements such as headings,
paragraphs, lists, images, links, and more. Examples include HTML, AsciiDoc,
reStructuredText and Markdown.

6

HTML is useful, but do you really want to write your docs in it?

https://developer.mozilla.org/en-US/docs/Web/HTML
https://asciidoc.org/
https://docutils.sourceforge.io/rst.html
https://www.markdownguide.org/

What is Markdown?

Markdown is a simple markup language that allows you to add
formatting elements to a text file. Markdown was designed with a focus
on generating HTML (see this blog post from 2004).
In its original form, Markdown is both:

• A formatting specification, and
• A tool for converting markdown files to HTML for publication.

In recent years, Markdown has become the defacto standard for
technical documentation. It is less complete than other markup
languages (e.g., AsciiDoc) but is simpler to use.

7

https://daringfireball.net/projects/markdown/

8

Using mdbook
See the [mdbook guide](https://rust-
lang.github.io/mdBook/for_developers/index.html)
for information on using `mdbook`.

There are several methods for navigating through
the chapters of a book.

* The sidebar on the left provides a list of all
chapters. Clicking on any of the chapter titles will
load that page.
* The arrow buttons at the bottom of the page can
be used to navigate to the previous or the next
chapter.

This site supports the following keyboard shortcuts:

* `Arrow-Left`: Navigate to the previous page.
* `Arrow-Right`: Navigate to the next page.
* `t`: Jump to the top of the current page.
* `s`: Jump to the search bar (`ESC` to cancel).

The course website is generated from Markdown! It’s
also used for documentation on GitLab, GitHub etc.

Basic Syntax
Symbol Meaning

Heading 1

Heading 2

Heading 3

text Emphasis

text Emphasis alt.

text Embolden

* item Bulleted list

1. item Numbered list

(title)[URL] Link to a URL

!(title)[URL] Embed an image

9

Why would we use Markdown?
• You can write documentation in any text editor.
• Text, so you can version control it, diff it etc.
• VS Code, most IDEs, GitHub, GitLab support it.
• Defacto standard for software development.

Why not use Markdown?
• There is no standard specification (GitHub and a

few organizations have produced extensions).
• Missing support for important features:

• Footnotes
• References
• Floating images
• Columns

• Works best at generating simple-HTML docs.

How do I use it?
• Editing Markdown

• VS code, IntelliJ IDEA and most editors have support for Markdown.

• Integrating into your code/documents:
• Online sites like GitLab, GitHub have built-in support i.e., you can enter text as

markdown, and it will be shown “pretty-printed” when possible.
• You can even embed diagrams into MD in your code projects!

• Generating HTML?
• Tools like `pandoc` and `Marked` can convert markdown to HTML.
• Static site generators: Jekyll, Hugo, Retype all generate websites from

markdown.

10

11

Most development tools will work with Markdown. IntelliJ IDEA for example
has support for Markdown syntax and will even pretty-print the output.

Tools > Mermaid.js
How do we generate diagrams-as-code?

12

Diagramming

• Documentation requires diagrams.
• We can imagine adding many different types of diagrams and charts

to our documentation, including:

• Gantt charts to project management documents.
• Timeline charts to show milestones and your delivery schedule.
• UML diagrams for design, and to document implementation details.

• Component diagrams, class diagrams, sequence diagrams, state diagrams…
• Flowcharts, and requirements diagrams to explain features to customers.
• Pie charts to show results.

13

Diagramming Tools
There are many types of diagramming tools:
1. Pixel manipulation tools

• Produce image formats e.g., PNG. Poor for diagrams; large files, don’t scale well.
2. Vector drawing tools

• Produce SVG files or a similar format, which you can embed as images.
• Very precise; complete control over the results!
• e.g., Affinity Designer, Adobe Illustrator

3. Markup-based drawing tools
• You use a markup language to describe your diagram.
• A diagram “engine” decides on format, layout etc., so it’s less precise.
• e.g., PlantUML, Mermaid.js

14

https://affinity.serif.com/en-gb
https://www.adobe.com/ca/products/illustrator.html
https://plantuml.com/
https://mermaid.js.org/

Mermaid.js
Mermaid is a JavaScript based diagramming and charting tool that
renders Markdown-inspired text definitions to create and modify
diagrams dynamically.

-- Mermaid.js.org

15

Mermaid supports a HUGE range of diagrams, including all UML diagrams, project charts, etc.

https://mermaid.js.org/intro/

Mermaid.js Diagram Syntax

16

```mermaid
flowchart 
 LR Start --> Stop
```

``` mermaid
erDiagram 
 CUSTOMER ||--o{ ORDER : places 
 ORDER ||--|{ LINE-ITEM : contains 
 CUSTOMER }|..|{ DELIVERY-ADDRESS : uses
```


17

class diagram

Gantt chartpie chart

state diagram

er diagram

See Mermaid.js
documentation for
examples

https://mermaid.js.org/intro/
https://mermaid.js.org/intro/

Mermaid.js + Markdown
• Most environments that support Markdown also support Mermaid.
• This includes GitLab, GitHub, VS Code, IntelliJ IDEA, pandoc, …

18

You can wrap Mermaid expressions in code blocks in your Markdown documents, and
they will be rendered inline. This works in GitLab too!

``` mermaid
classDiagram 
 class BankAccount 
 BankAccount : +String owner 
 BankAccount : +Bigdecimal balance 
 BankAccount : +deposit(amount) 
 BankAccount : +withdrawal(amount)
```


19

Most tools support Mermaid diagrams in Markdown documents. IntelliJ
IDE above shows this diagram inline with Markdown documentation.

Tools > Figma
Generating screen mockups

20

Prototyping
A prototype is a mock-up of your solution, that is built to demonstrate
functionality and elicit feedback from your users.
• Helps you determine

• Which features are interactive, and how the user can utilize them.
• What input is required for a screen, what output makes sense.
• The order of screens! How the user will navigate (does it make sense?)

• Useful to show to your user and walk through all the features to get
initial “buy in”.
• You will not get everything right! The goal is early feedback from

users.

21

Fidelity
Fidelity refers to the level-of-
detail.
Low-fidelity prototypes are
deliberately simple, low-tech,
and represent a minimal
investment.
• You can sketch on paper.
• Many online tools help you

build wireframe diagrams that
you can demo e.g., Figma.
• Higher fidelity can be semi-

interactive to test progression
through the interface.

22

Low Medium High

X

Figma
Figma is a very popular prototyping
tool (desktop, mobile, web).
• Mock screens & interactions.
• Can build specific UI designs (e.g.,

iPhone, iPad, desktop).
• Iteration is much easier compared

to paper prototyping.

Other options
• Omnigraffle (mac)
• Balsamiq (win, mac, web)
• Hand-drawn diagrams

23

https://www.figma.com/

https://www.figma.com/
https://www.figma.com/
https://www.figma.com/

