Kotlin Part 1:
Introduction

CS 346 Application
Development

Introduction

What is Kotlin? Why do we use it?

Why Kotlin?

There are literally hundreds of programming languages to choose from.

How do you pick a programming language?
* Does it offer features and capabilities that you require?

* How mature is the ecosystem around the language — do you have useful
libraries and tools support to use it effectively?

* How productive can you be with it - are there books, tutorials, videos etc.?

“Why can’t we just build everything in C++?”
— every C++ developer

https://en.wikipedia.org/wiki/List_of_programming_languages

Low-level languages are suitable when you are concerned with the
performance of your software, and when you need to control resources.

* They are often used for systems programming i.e., delivering code that runs as
fast as possible and uses as little memory as possible.

* Examples of systems languages include C, C++, and Rust.

* Appropriate domains include device drivers, system utilities, game engines.

High-level languages are suitable when you are concerned with speed
of development, extensibility, and the robustness of your solution.

* Applications programming leans heavily on high-level languages, trading some
performance for desirable language features e.g., automatic memory mgmt.

e Examples of application languages include Swift, Kotlin, Go, and Dart.
» Appropriate domains include web, mobile/desktop applications, servers.

Kotlin E Kotlin

kotlinlang.org

It’s a modern, general-purpose language.
* Compares favourably to Swift, Dart, Scala i.e. other high-level languages.
* Imperative, object-oriented, functional styles (hybrid language).
e Statically-typed; Strong-types; type inference; NULL safety.
* Automatic memory management & garbage-collection.
» Strong standard library, extensions for concurrency, serialization.

It’s multi-platform.

* Android, iOS, Desktop (Windows, Linux, Mac)
* Future: JS (beta), WASM/web (alpha), and more.

It has broad library support for graphics, networking, databases...
* Compose (Ul), Ktor (Networking), Exposed (DB) and more.

http://kotlinlang.org/

RedMonk Q124 Programming Language Rankings

100~

Objective-eWift
VBA
Visual Basic .NET Visual Basic ?':l:
Matiab K?,'ﬂaigh,"
el
Go
GCC Machine Description R Rust

—_ Sass

75- - Lua
§ Arduino F# Clojure
- : Cuda
- ColdFusion
» ASP QML iy Julia
é, . . E"angoffeeScript e
3 ActionScript Scheggg, o
S ; ¢ OcCaml
g obotFramework el c Solidity

om

5 Racket \, 5 i
£ 50~ Mathematica Dy
® Liquid Puppet
g System\V. q Emacs Lisp
a2 ABAP ysler
I FreeMarker c
S WebAssembly o4
g e Pascal DApex
; aku
5 Haxe Smaltalk Eim
g_ s SaltStack BitBake
¢ PostScript Vala Gherk(i;Ds iot

25~ Stylus Lt i

Bicep 4 Nix
PureScript gajierina
xtflow Reason HCL
Gpel Zig As
. tro
Brainfuck Lean Hack
Jsonnet
ShaderLab
Sta"a’Vnm scri
pt
0- SQF Rich Text Format Roff
0 30 60 90

Popularity Rank on GitHub (by # of Projects)

you are here

Installation

Option 1: Command-line/editor (not recommended)

 Install Java 21 or later from Azul or a similar site.

* Install Kotlin from the Kotlin landing page or pkg manager.
* Install VS Code + Kotlin extensions + LSP from GitHub (alpha!)

Option 2: IDE (recommended!)

* IntelliJ IDEA: install from jetbrains.com/idea
* Community edition is free for non-commercial use.
* As a student, you can get a free ultimate license.
* Desktop or mobile apps

* Android Studio: install from developer.android.com
* For Android development, you need the SDK from this.
* Mobile apps only.

Only really
useful for

snippets.

Better for
complex &
mobile
projects.

https://www.azul.com/
http://kotlinlang.org/
https://github.com/Kotlin/kotlin-lsp
https://www.jetbrains.com/idea/
https://www.jetbrains.com/academy/student-pack/
http://developer.android.com/

Compiling Code (JVM)

The “kotlinc’ compiler consists of multiple backend compilers.
All are available through the IDE:

* Kotlin/Native compiles Kotlin code to native binaries.

* Kotlin/Android compiles Kotlin code to native Android binaries.
* Kotlin/JVM compiles Kotlin code to bytecode, usually for desktop.

Interpreter
/Y xha for Mac

Source Code g Byte Code Interpreter

(.java file) > @ (-class file) \ M for Windows
(javac) Interpreter

ANh for Linux

Kotlin/JVM compiler generates bytecode that executes in a native JVM, usually on desktop.

Other compilers produce different outputs e.g., native binaries for iOS or Android. 10

https://kotlinlang.org/docs/native-overview.html
https://kotlinlang.org/docs/native-overview.html
https://developer.android.com/kotlin
https://developer.android.com/kotlin
https://kotlinlang.org/docs/jvm-get-started.html
https://kotlinlang.org/docs/jvm-get-started.html

How to learn Kotlin

Attend lectures, tinker with the sample code.
Read some of the online resources!

* Online resources (free)
e Kotlin Documentation: official documentation.

e Dave Leeds on Kotlin: online version of the book below.
e Kotlin Youtube channel: official videos.

e Books (not free)
* Dave Leeds. 2025. Kotlin lllustrated. Typealias — beginner/intermediate
* Elizarov, Isakova, et al. Kotlin in Action. 2nd ed. Manning - advanced

11

https://kotlinlang.org/
https://kotlinlang.org/
https://typealias.com/start/
https://typealias.com/start/
https://www.youtube.com/c/kotlin
https://www.youtube.com/c/kotlin
https://www.amazon.com/Kotlin-Illustrated-Guide-Dave-Leeds/dp/B0F3Q1DKGX/
https://www.manning.com/books/kotlin-in-action-second-edition

Getting Started

What does a Kotlin program actually look like?

A tiny but valid Kotlin program

hello.kt
fun main(args: Array<String>) { // fun main() ig the entry point
println(hello(“Jeff”)) // args are optional
3 // println() prints to the console
fun hello(name: String): String { . .
return “Hello, $name!” // fun hello() defines a function
1 // return just returns a String

// you xcanx compile and run on the command line
$ kotlinc hello.kt —include-runtime -d hello.jar
$ java —jar hello.jar

// kotlinc compiles the program
// java runs the program (JVM)

Hello, Jeff!

13

Getting started

Kotlin programs consist of one or more source files.
* No header files required; just source files.
* They must end in a .kt extension.

A source file can contain:

* Top-level functions (like an imperative language)

* Class definitions (like an object-oriented language)
* Global variable declarations

You can have as many source files as you wish for a program.

* There are no restrictions to how you group your code.
* e.g., you can have a single source files with a mix of functions and classes.

e Convention: give your files meaningful names e.g., name after the primary class.

Type System

It’s a good a place to start as any...

Type systems

Kotlin is a statically typed language.

* Static typing: variables need to be declared before use. e.g. C++, Java, Kotlin, TS.
Types are verified at compile time! This eliminates runtime type errors.

* Strong typed: strict typing rules enforced at compile-time. e.g. Java, C++, Kotlin.

Basic-types:

Byte, Short, Int, Long Float, Double Char, String
UByte, UShort, UInt, ULong

signed and unsigned integers floating point others

https://kotlinlang.org/docs/basic-types.html
https://kotlinlang.org/docs/basic-types.html
https://kotlinlang.org/docs/basic-types.html

Type declaration

The var keyword is used to declare variables.
* The type follows the name.

 Variables are mutable (i.e., they can be reassigned after definition).

var pi: Float = 3.14 // initial definition
pi = 3.1415926 // reassignment is allowed, the type can’t change

Kotlin supports type inference at compile-time, if it’s unambiguous.

var pi = 3.14 // Inferred to be a Double (not Float)
var name = “Jeff” // String

17

Mutability

Declaration keywords indicate mutability.

e var: the value of the variable can be changed (it’s mutable).

e val: the variable cannot be changed (it’'s immutable)

var pi: Float = 3.14 // ok
pi = 3.1415926 // oK
val e: Float = 2.718 // oK
pi = 2.71828 // compilation error

> Best practice: use 'val' as much as you can!

18

NULL Safety

NULL is the absence of a value.

* You cannot operate on a NULL as you would a regular type, and you need
to take steps to ensure that you are not accidentally doing so.

* Checks are usually done at runtime
* Explicitly checking return values for NULL
e e.g., if (retval I=null) {//... }

 Catching exceptions
* e.g., try{ }catch (ex: Exception) { //handle null }

Mishandling NULL values can cause runtime exceptions & crashes
e Tony Hoare: “NULL was my billion-dollar mistake”.

19

NULL Safety

Kotlin has semantics for dealing with NULL values
* Supports checking for null at compile-time.

By default, types cannot be NULL.

? suffix indicates a NULLABLE type.
var lengthl: Int = null // Not nullable integer so can’t be null

var length2: Int? = null // Nullable integer so can be assigned null

If a type is nullable, evaluations of that variable must handle the null case.

var name: String? = “Jeff” // name could be null

if (name != null) println(name) // handles null case, we would have a
compiler error if we hadn’t handled it

20

NULL Syntax

We have special syntax to make dealing with NULL values a little easier.

e.g., let’s check the length of a string that happens to be null.
var name: String? = null

2.7 is the “safe call operator”. Can only be invoked if not null.
val lenl = name?.length
println(lenl) // null

We can use our explicit NULL checks in an expression.
val len2 = i# (name != null) name.length else 0
println(len2) // 2

?:"is a ternary operator for NULL (“elvis operator”)
val len3 = name?.length ?: 0
println(len3) // 2

https://pl.kotl.in/I44CMsMu9

21

https://pl.kotl.in/I44CMsMu9
https://pl.kotl.in/I44CMsMu9
https://pl.kotl.in/I44CMsMu9

Functions

Function syntax and arguments.

22

Functions

// 1. No parameters
fun hello() A{
println("Hello World")

// 2. Parameter 1list, return type
fun sum(a: Int, b: Int): Int {
return a + b

Function body

// 3. Parameter list, return type
fun sum(a: Int, b: Int): Int = a + b

// 4. Parameter 1list, type inferred
fun sum(a: Int, b: Int) = a + b

Function expression (tidy!)

23

Default Arguments

We can supply default values for parameters.
A parameter with a default value is optional for the caller.

fun mult(a: Int, b: Int = 2): Int {
return a * b

fun main() {
println(mult(1)) // a=1, b defaults to 2; 1x2=2
printtn(mult(5,2)) // a=5, b=2; 5x2=10

https://pl.kotl.in/GW424Hz-q

24

https://pl.kotl.in/GW424Hz-q
https://pl.kotl.in/GW424Hz-q
https://pl.kotl.in/GW424Hz-q
https://pl.kotl.in/GW424Hz-q
https://pl.kotl.in/GW424Hz-q

Named Arguments

You can specify argument names when you call a function.
This lets you omit arguments or change the calling order!

fun repeat(str: String = "%", num: Int = 3) {
println(str.repeat(num))

}.

fun main() {
repeat() // positional, prints ‘*%%’ using defaults
repeat("#") // positional, prints ‘###’ using default n=3
repeat("=", 5) // positional, prints ‘====='

repeat(num=3, str="#") // named, prints ‘###’

https://pl.kotl.in/vBjdzjDmf

25

https://pl.kotl.in/vBjdzjDmf
https://pl.kotl.in/vBjdzjDmf
https://pl.kotl.in/vBjdzjDmf
https://pl.kotl.in/vBjdzjDmf

Control Flow

Range of control flow options...

Standard Control Flow

Traditional control flow is supported
« if... then.. else

« while, do... while

 break, continue

New!

- when // replaces switch

« for (s in collection) // iteration

« for (a in 1..5) // iteration up through range

« for (a in 5 downTo 1) // iteration down through range

27

if... then

if... then has both statement and expression forms.

// statement

if (a > b) {
println(a)

} else {
println(b)

// expression
val max = if (a > b) a else b

// this works as a ternary operator

28

for...

A “for’ loop iterates through anything that provides an iterator (e.g., the
built-in collection classes).

val itemsl = 1istOf("apple", "banana", "kiwifruit")
for (item in items1) {

println(item)
}

val items2 = 1istOf("apple", "banana", "kiwifruit")
for (index in items2.indices) {
println("item at $index is ${items2[index]}")

https://pl.kotl.in/D8boDJXak

29

https://pl.kotl.in/D8boDJXak
https://pl.kotl.in/D8boDJXak
https://pl.kotl.in/D8boDJXak

Ranges

for(i in 15..18) {
println(i) // 15 16 17 18
¥

for (i in 5 downTo 1 step 2) {
println(i) // 53 1
I3

val low=1
val high=10
if (num in low..high) {
println("The number ${num} is between ${low} and ${high}")
¥

https://pl.kotl.in/vylZoPZAV

30

https://pl.kotl.in/vyJZoPZAV
https://pl.kotl.in/vyJZoPZAV
https://pl.kotl.in/vyJZoPZAV
https://pl.kotl.in/vyJZoPZAV

when

“when™ 1s an improved switch statement.

val x = 13
val validNumbers = 1ist0f(11,13,17,19)
when (x) {

0, 1 -> pPint("X == 0 opr X == n)

in 2..10 -> print("x is in the range")

in validNumbers -> print("x is valid")

lin 10..20 -> print("x is outside the range")
else -> print("none of the above")

}

https://pl.kotl.in/CzIL j4zz

31

https://pl.kotl.in/CzlL_j4zz
https://pl.kotl.in/CzlL_j4zz
https://pl.kotl.in/CzlL_j4zz

when

"when™ as an expression

val x = 13
val response = when {

X < 0 —> "negative"

X >= 0 & x <= 9 —> "small"

X >=10 —> "large"

else —> "how do we get here?"
5

println(response)

https://pl.kotl.in/IEFORSRBO

32

https://pl.kotl.in/IEf9RSRB0
https://pl.kotl.in/IEf9RSRB0
https://pl.kotl.in/IEf9RSRB0

Collections

Built-in collection classes.

Collections

A collection is a variable number of elements of the same type.
 Kotlin provides mutable and immutable interfaces to these collections.
 All collections (except Arrays) are dynamically allocated and garbage-collected.

34

List

A list is an ordered, dynamically allocated collection of objects.

// immutable (due to 1istO0f)

var fruits = 1ist0f("advocado","banana", "cantaloupe")
println(fruits.get(0)) // advocado

println(fruits[1]) // banana

// fruits.add("dragon fruit") // unresolved, since immutable

// mutable (due to mutablelListOf)

var mutableFruits = mutablelListO0f("advocado", "banana")
mutableFruits.add("cantaloupe") // this works!
println(mutableFruits.last())

https://pl.kotl.in/DcUwgxGWx

35

https://pl.kotl.in/DcUwgxGWx
https://pl.kotl.in/DcUwgxGWx
https://pl.kotl.in/DcUwgxGWx
https://pl.kotl.in/DcUwgxGWx

Pair

A pair is a tuple of two values.

val ns = Pair("Halifax Airport", "YHZ")
println(ns) // (Halifax Airport, YHZ)

The contents of Pair are NOT mutable, since this is a data class whose contents
aren’t expected to change. copy to duplicate with a modified value.

var characters = Pair("Tom", "Jerry")
// characters.second = "Jennifer" // error!!
val characters2 = characters.copy(second = "Jennifer")

println(characters2) // (Tom, Jennifer)

https://pl.kotl.in/1uWdBModj

36

https://pl.kotl.in/1uWdBModj

Map

A map is an associative dictionary of key and value pairs (i.e. it maps one
value to another).

// immutable (initialize with pairs)

val imap = map0f(1 to "x", 2 to "y", 3 to "z")
println(imap) // {1=x, 2=y, 3=z}

// imap.put(4, "q") // immutable, so unresolved reference

// mutable

val mmap = mutableMapOf(5 to "x", 6 to "y")
mmap.put(7,"z") // ok

println(mmap) // {5=x, 6=y, 7=z}

https://pl.kotl.in/FcTODJrsP

37

https://pl.kotl.in/FcT0DJrsP
https://pl.kotl.in/FcT0DJrsP
https://pl.kotl.in/FcT0DJrsP

Accessors

Kotlin has special properties that can be used to access data elements in
collections.

val list = 1ist0f("one", “two", "three", "four")

list.contains("four")) // true

// slice - extract into a new collection

list.slice(1..2) // [two, three]
list.slice(0..2 step 2) // [one, three]

// take - extract n elements
list.take(3) // [one, two, three]
list.takeLast(2) // [three, four]

https://pl.kotl.in/TQL-03RYI

38

https://pl.kotl.in/TQL-o3RYI
https://pl.kotl.in/TQL-o3RYI
https://pl.kotl.in/TQL-o3RYI
https://pl.kotl.in/TQL-o3RYI
https://pl.kotl.in/TQL-o3RYI

Accessors

// extract using iterators
list.first { it.length > 3 } // [three]
list.last { it.startsWith("o") } // [one]

// iterate over map
for ((k, v) in imap) {
println("$k = $v")
}
// alternate syntax
imap.forEach { k, v -> printtn("$k = $v") }

39

Reference

e Dave Leeds. 2025. Dave Leeds on Kotlin. Online.

* Dave Leeds. 2025. Kotlin: An lllustrated Guide. TypeAlias Studios LLC.
ISBN 979-8992796605.

e JetBrains. 2025. Kotlin Documentation. Online.

* Roman Elizaroy, et al. 2024. Kotlin in Action. 2nd edition. Manning
Publications. ISBN 9781617299605.

40

https://typealias.com/start/
https://kotlinlang.org/docs/home.html

