
Kotlin Part 1:
Introduction

CS 346 Application
Development

1

Introduction
What is Kotlin? Why do we use it?

2

Why Kotlin?
There are literally hundreds of programming languages to choose from.
How do you pick a programming language?
• Does it offer features and capabilities that you require?
• How mature is the ecosystem around the language — do you have useful

libraries and tools support to use it effectively?
• How productive can you be with it - are there books, tutorials, videos etc.?

3

“Why can’t we just build everything in C++?”
— every C++ developer

https://en.wikipedia.org/wiki/List_of_programming_languages

Low-level languages are suitable when you are concerned with the
performance of your software, and when you need to control resources.
• They are often used for systems programming i.e., delivering code that runs as

fast as possible and uses as little memory as possible.
• Examples of systems languages include C, C++, and Rust.
• Appropriate domains include device drivers, system utilities, game engines.

High-level languages are suitable when you are concerned with speed
of development, extensibility, and the robustness of your solution.
• Applications programming leans heavily on high-level languages, trading some

performance for desirable language features e.g., automatic memory mgmt.
• Examples of application languages include Swift, Kotlin, Go, and Dart.
• Appropriate domains include web, mobile/desktop applications, servers.

4

Kotlin

It’s a modern, general-purpose language.
• Compares favourably to Swift, Dart, Scala i.e. other high-level languages.
• Imperative, object-oriented, functional styles (hybrid language).
• Statically-typed; Strong-types; type inference; NULL safety.
• Automatic memory management & garbage-collection.
• Strong standard library, extensions for concurrency, serialization.

It’s multi-platform.
• Android, iOS, Desktop (Windows, Linux, Mac)
• Future: JS (beta), WASM/web (alpha), and more.

It has broad library support for graphics, networking, databases...
• Compose (UI), Ktor (Networking), Exposed (DB) and more.

6

kotlinlang.org

http://kotlinlang.org/

8

you are here

Installation
Option 1: Command-line/editor (not recommended)
• Install Java 21 or later from Azul or a similar site.
• Install Kotlin from the Kotlin landing page or pkg manager.
• Install VS Code + Kotlin extensions + LSP from GitHub (alpha!)

Option 2: IDE (recommended!)
• IntelliJ IDEA: install from jetbrains.com/idea

• Community edition is free for non-commercial use.
• As a student, you can get a free ultimate license.
• Desktop or mobile apps

• Android Studio: install from developer.android.com
• For Android development, you need the SDK from this.
• Mobile apps only.

9

Only really
useful for
snippets.

Better for
complex &
mobile
projects.

https://www.azul.com/
http://kotlinlang.org/
https://github.com/Kotlin/kotlin-lsp
https://www.jetbrains.com/idea/
https://www.jetbrains.com/academy/student-pack/
http://developer.android.com/

Compiling Code (JVM)
The `kotlinc` compiler consists of multiple backend compilers.
All are available through the IDE:
• Kotlin/Native compiles Kotlin code to native binaries.

• Kotlin/Android compiles Kotlin code to native Android binaries.
• Kotlin/JVM compiles Kotlin code to bytecode, usually for desktop.

10

Kotlin/JVM compiler generates bytecode that executes in a native JVM, usually on desktop.
Other compilers produce different outputs e.g., native binaries for iOS or Android.

https://kotlinlang.org/docs/native-overview.html
https://kotlinlang.org/docs/native-overview.html
https://developer.android.com/kotlin
https://developer.android.com/kotlin
https://kotlinlang.org/docs/jvm-get-started.html
https://kotlinlang.org/docs/jvm-get-started.html

How to learn Kotlin

Attend lectures, tinker with the sample code.
Read some of the online resources!
• Online resources (free)

• Kotlin Documentation: official documentation.
• Dave Leeds on Kotlin: online version of the book below.
• Kotlin Youtube channel: official videos.

• Books (not free)
• Dave Leeds. 2025. Kotlin Illustrated. Typealias – beginner/intermediate
• Elizarov, Isakova, et al. Kotlin in Action. 2nd ed. Manning - advanced

11

https://kotlinlang.org/
https://kotlinlang.org/
https://typealias.com/start/
https://typealias.com/start/
https://www.youtube.com/c/kotlin
https://www.youtube.com/c/kotlin
https://www.amazon.com/Kotlin-Illustrated-Guide-Dave-Leeds/dp/B0F3Q1DKGX/
https://www.manning.com/books/kotlin-in-action-second-edition

Getting Started
What does a Kotlin program actually look like?

12

A tiny but valid Kotlin program
hello.kt

 fun main(args: Array<String>) {
 println(hello(“Jeff”))
 }

 fun hello(name: String): String {
 return “Hello, $name!”
 }

// you *can* compile and run on the command line
$ kotlinc hello.kt -include-runtime -d hello.jar
$ java -jar hello.jar

Hello, Jeff!

13

// fun main() is the entry point
// args are optional
// println() prints to the console

// fun hello() defines a function
// return just returns a String

// kotlinc compiles the program
// java runs the program (JVM)

C-style syntax,
like Swift or JS.
No semicolons!

Getting started
Kotlin programs consist of one or more source files.
• No header files required; just source files.
• They must end in a `.kt` extension.

A source file can contain:
• Top-level functions (like an imperative language)
• Class definitions (like an object-oriented language)
• Global variable declarations

You can have as many source files as you wish for a program.
• There are no restrictions to how you group your code.

• e.g., you can have a single source files with a mix of functions and classes.
• Convention: give your files meaningful names e.g., name after the primary class.

14

Type System
It’s a good a place to start as any…

15

Type systems

Kotlin is a statically typed language.
• Static typing: variables need to be declared before use. e.g. C++, Java, Kotlin, TS.

Types are verified at compile time! This eliminates runtime type errors.
• Strong typed: strict typing rules enforced at compile-time. e.g. Java, C++, Kotlin.

Basic-types:

16

signed and unsigned integers floating point others

Byte, Short, Int, Long
UByte, UShort, UInt, ULong

Float, Double Char, String

https://kotlinlang.org/docs/basic-types.html
https://kotlinlang.org/docs/basic-types.html
https://kotlinlang.org/docs/basic-types.html

Type declaration
The var keyword is used to declare variables.
• The type follows the name.
• Variables are mutable (i.e., they can be reassigned after definition).

var pi: Float = 3.14 // initial definition
pi = 3.1415926 // reassignment is allowed, the type can’t change

Kotlin supports type inference at compile-time, if it’s unambiguous.

var pi = 3.14 // Inferred to be a Double (not Float)
var name = “Jeff” // String

17

Mutability
Declaration keywords indicate mutability.
• var: the value of the variable can be changed (it’s mutable).
• val: the variable cannot be changed (it’s immutable)

var pi: Float = 3.14 // ok
pi = 3.1415926 // ok

val e: Float = 2.718 // ok
pi = 2.71828 // compilation error

> Best practice: use `val` as much as you can!

18

NULL Safety
NULL is the absence of a value.
• You cannot operate on a NULL as you would a regular type, and you need

to take steps to ensure that you are not accidentally doing so.
• Checks are usually done at runtime

• Explicitly checking return values for NULL
• e.g., if (retval != null) { //… }

• Catching exceptions
• e.g., try { } catch (ex: Exception) { //handle null }

Mishandling NULL values can cause runtime exceptions & crashes
• Tony Hoare: “NULL was my billion-dollar mistake”.

19

NULL Safety

Kotlin has semantics for dealing with NULL values
• Supports checking for null at compile-time.

By default, types cannot be NULL.
? suffix indicates a NULLABLE type.
var length1: Int = null // Not nullable integer so can’t be null
var length2: Int? = null // Nullable integer so can be assigned null

If a type is nullable, evaluations of that variable must handle the null case.
var name: String? = “Jeff” // name could be null
if (name != null) println(name) // handles null case, we would have a

compiler error if we hadn’t handled it

20

Finding errors at
compile-time is

ALWAYS preferable
to runtime.

NULL Syntax
We have special syntax to make dealing with NULL values a little easier.

e.g., let’s check the length of a string that happens to be null.
var name: String? = null

`?.`` is the “safe call operator”. Can only be invoked if not null.
val len1 = name?.length
println(len1) // null

We can use our explicit NULL checks in an expression.
val len2 = if (name != null) name.length else 0
println(len2) // 0

`?:` is a ternary operator for NULL (“elvis operator”)
val len3 = name?.length ?: 0
println(len3) // 0

21
https://pl.kotl.in/I44CMsMu9

https://pl.kotl.in/I44CMsMu9
https://pl.kotl.in/I44CMsMu9
https://pl.kotl.in/I44CMsMu9

Functions
Function syntax and arguments.

22

Functions

// 1. No parameters
fun hello() {

println("Hello World")
}

// 2. Parameter list, return type
fun sum(a: Int, b: Int): Int {

return a + b
}

23

// 3. Parameter list, return type

fun sum(a: Int, b: Int): Int = a + b

// 4. Parameter list, type inferred

fun sum(a: Int, b: Int) = a + b

Function body Function expression (tidy!)

Default Arguments
We can supply default values for parameters.
A parameter with a default value is optional for the caller.

fun mult(a: Int, b: Int = 2): Int {
return a * b

}

fun main() {
println(mult(1)) // a=1, b defaults to 2; 1x2=2
println(mult(5,2)) // a=5, b=2; 5x2=10

}

24
https://pl.kotl.in/GW424Hz-q

https://pl.kotl.in/GW424Hz-q
https://pl.kotl.in/GW424Hz-q
https://pl.kotl.in/GW424Hz-q
https://pl.kotl.in/GW424Hz-q
https://pl.kotl.in/GW424Hz-q

Named Arguments
You can specify argument names when you call a function.
This lets you omit arguments or change the calling order!

fun repeat(str: String = "*", num: Int = 3) {
println(str.repeat(num))

}

fun main() {
repeat() // positional, prints ‘***’ using defaults
repeat("#") // positional, prints ‘###’ using default n=3
repeat("=", 5) // positional, prints ‘=====’
repeat(num=3, str="#") // named, prints ‘###’

}

25
https://pl.kotl.in/vBjdzjDmf

https://pl.kotl.in/vBjdzjDmf
https://pl.kotl.in/vBjdzjDmf
https://pl.kotl.in/vBjdzjDmf
https://pl.kotl.in/vBjdzjDmf

Control Flow
Range of control flow options…

26

Standard Control Flow

Traditional control flow is supported
• if... then.. else
• while, do... while
• break, continue

New!
• when // replaces switch
• for (s in collection) // iteration
• for (a in 1..5) // iteration up through range
• for (a in 5 downTo 1) // iteration down through range

27

if… then

if... then has both statement and expression forms.

// statement
if (a > b) {

println(a)
} else {

println(b)
}

// expression
val max = if (a > b) a else b // this works as a ternary operator

28

for…

A `for` loop iterates through anything that provides an iterator (e.g., the
built-in collection classes).

val items1 = listOf("apple", "banana", "kiwifruit")
for (item in items1) {
println(item)

}

val items2 = listOf("apple", "banana", "kiwifruit")
for (index in items2.indices) {
println("item at $index is ${items2[index]}")

}

29
https://pl.kotl.in/D8boDJXak

https://pl.kotl.in/D8boDJXak
https://pl.kotl.in/D8boDJXak
https://pl.kotl.in/D8boDJXak

Ranges

for(i in 15..18) {
println(i) // 15 16 17 18

}

for (i in 5 downTo 1 step 2) {
println(i) // 5 3 1

}

val low=1
val high=10
if (num in low..high) {
println("The number ${num} is between ${low} and ${high}")

}

30
https://pl.kotl.in/vyJZoPZAV

https://pl.kotl.in/vyJZoPZAV
https://pl.kotl.in/vyJZoPZAV
https://pl.kotl.in/vyJZoPZAV
https://pl.kotl.in/vyJZoPZAV

when

`when` is an improved switch statement.

val x = 13
val validNumbers = listOf(11,13,17,19)

when (x) {
0, 1 -> print("x == 0 or x == 1")
in 2..10 -> print("x is in the range")
in validNumbers -> print("x is valid")
!in 10..20 -> print("x is outside the range")
else -> print("none of the above")

}
31

https://pl.kotl.in/CzlL_j4zz

https://pl.kotl.in/CzlL_j4zz
https://pl.kotl.in/CzlL_j4zz
https://pl.kotl.in/CzlL_j4zz

when

`when` as an expression

val x = 13
val response = when {

x < 0 -> "negative"
x >= 0 && x <= 9 -> "small"
x >=10 -> "large"
else -> "how do we get here?"

}
println(response)

32
https://pl.kotl.in/IEf9RSRB0

https://pl.kotl.in/IEf9RSRB0
https://pl.kotl.in/IEf9RSRB0
https://pl.kotl.in/IEf9RSRB0

Collections
Built-in collection classes.

33

Collections
A collection is a variable number of elements of the same type.

• Kotlin provides mutable and immutable interfaces to these collections.
• All collections (except Arrays) are dynamically allocated and garbage-collected.

34

List An ordered collection of objects.

Pair A tuple of two values.

Triple A tuple of three values.

Set An unordered collection of objects.

Map An associative dictionary of keys and values.

Array Indexed, fixed-size collection of object or primaries - rarely used

List

A list is an ordered, dynamically allocated collection of objects.

// immutable (due to listOf)
var fruits = listOf("advocado","banana","cantaloupe")
println(fruits.get(0)) // advocado
println(fruits[1]) // banana
// fruits.add("dragon fruit") // unresolved, since immutable

// mutable (due to mutableListOf)
var mutableFruits = mutableListOf("advocado","banana")
mutableFruits.add("cantaloupe") // this works!
println(mutableFruits.last())

35
https://pl.kotl.in/DcUwgxGWx

https://pl.kotl.in/DcUwgxGWx
https://pl.kotl.in/DcUwgxGWx
https://pl.kotl.in/DcUwgxGWx
https://pl.kotl.in/DcUwgxGWx

Pair

A pair is a tuple of two values.
val ns = Pair("Halifax Airport", "YHZ")
println(ns) // (Halifax Airport, YHZ)

The contents of Pair are NOT mutable, since this is a data class whose contents
aren’t expected to change. `copy` to duplicate with a modified value.
var characters = Pair("Tom", "Jerry")
// characters.second = "Jennifer" // error!!
val characters2 = characters.copy(second = "Jennifer")
println(characters2) // (Tom, Jennifer)

36
https://pl.kotl.in/1uWdBModj

https://pl.kotl.in/1uWdBModj

Map

A map is an associative dictionary of key and value pairs (i.e. it maps one
value to another).
// immutable (initialize with pairs)
val imap = mapOf(1 to "x", 2 to "y", 3 to "z")
println(imap) // {1=x, 2=y, 3=z}
// imap.put(4, "q") // immutable, so unresolved reference

// mutable
val mmap = mutableMapOf(5 to "x", 6 to "y")
mmap.put(7,"z") // ok
println(mmap) // {5=x, 6=y, 7=z}

37
https://pl.kotl.in/FcT0DJrsP

https://pl.kotl.in/FcT0DJrsP
https://pl.kotl.in/FcT0DJrsP
https://pl.kotl.in/FcT0DJrsP

Accessors

Kotlin has special properties that can be used to access data elements in
collections.
val list = listOf("one", “two", "three", "four")
list.contains("four")) // true

// slice - extract into a new collection
list.slice(1..2) // [two, three]
list.slice(0..2 step 2) // [one, three]

// take - extract n elements
list.take(3) // [one, two, three]
list.takeLast(2) // [three, four]

38
https://pl.kotl.in/TQL-o3RYI

https://pl.kotl.in/TQL-o3RYI
https://pl.kotl.in/TQL-o3RYI
https://pl.kotl.in/TQL-o3RYI
https://pl.kotl.in/TQL-o3RYI
https://pl.kotl.in/TQL-o3RYI

Accessors
// extract using iterators
list.first { it.length > 3 } // [three]
list.last { it.startsWith("o") } // [one]

// iterate over map
for ((k, v) in imap) {
 println("$k = $v")
}
// alternate syntax
imap.forEach { k, v -> println("$k = $v") }

39

Reference

• Dave Leeds. 2025. Dave Leeds on Kotlin. Online.
• Dave Leeds. 2025. Kotlin: An Illustrated Guide. TypeAlias Studios LLC.

ISBN 979-8992796605.
• JetBrains. 2025. Kotlin Documentation. Online.
• Roman Elizarov, et al. 2024. Kotlin in Action. 2nd edition. Manning

Publications. ISBN 9781617299605.

40

https://typealias.com/start/
https://kotlinlang.org/docs/home.html

