
Kotlin Part 2:
Object-Oriented Kotlin

CS 346 Application
Development

1

As an object-oriented language,
Kotlin supports these
foundational principles. Kotlin is
most like Java but has
enhancements compared to that
language.

2

Classes

Kotlin is a class-based object-oriented language.
• The class keyword denote a class definition:

class Person
val p = Person() // there is no `new` keyword required

• val or var can be applied to a variable to indicate whether the variable
can be reassigned (i.e., the object it points to can still mutate!).
• Classes contain methods (aka class functions), and properties (aka

fields to store data).

3

Sidebar: Visibility Modifiers
• Annotations or visibility modifiers go before the constructor,

property or function name.
• Kotlin defaults to “public” visibility if you omit the modifier -

which we will often do in examples.

4

Modifiers Class-Members Top-Level

public (default) Visible everywhere Visible everywhere

private Visible in class only Visible in the same file

protected Visible in class/subclass Not allowed

internal Visible in module Visible in module

Constructors
The primary constructor is part of the class definition.
Different but equivalent ways to define a constructor:

class Person1
class Person1()
class Person1() { }
class Person1 { }

class Person1
fun main() {

val student1 = Person1() // no properties or methods :/
}

5

These all define a single no-arg
constructor as part of the class
definition.

Properties
A property is a variable that is declared at the class level. They are
analogous to class `members`, or `fields` in other languages.

class Person {
var firstName = "Sally"
var lastName = "Fields"

}

fun main() {
val p = Person()
println(“Full name is ${p.firstName} ${p.lastName}")

}

6https://pl.kotl.in/5vPXtuia8

https://kotlinlang.org/docs/properties.html
https://pl.kotl.in/5vPXtuia8
https://pl.kotl.in/5vPXtuia8
https://pl.kotl.in/5vPXtuia8

Creating Properties from Parameters
fun main() {

class Person2(name: String, age: Int)
val student2 = Person2("Sally", 25) // parameters passed in but not saved
println("${student3.name}") // unresolved reference!

// val or var will create the associated properties for these parameters!
class Person3(val name: String, var age: Int)
val student3 = Person3("Sally", 25) // parameters turn into public properties
println("${student3.name} is ${student3.age}") // “Sally is 25”

}

7

https://pl.kotl.in/x3V0tNzQv

https://pl.kotl.in/x3V0tNzQv
https://pl.kotl.in/x3V0tNzQv
https://pl.kotl.in/x3V0tNzQv

Methods
Methods are just functions associated with a class.
Invoke then using the dot operator on an object (i.e. class instance).

class Person {
fun talk() {

println("I am a human being!")
}

}

fun main() {
val p = Person()
p.talk() // “I am a human being!”

}

8
https://pl.kotl.in/n0Hm9jVLP

https://pl.kotl.in/n0Hm9jVLP
https://pl.kotl.in/n0Hm9jVLP
https://pl.kotl.in/n0Hm9jVLP

Primary Constructor
Note that you only have the constructors you define.
• There are no automatically created constructors!
• Adding parameters here replaces the no-arg primary constructor with a

parameterized constructor

class Person1(val name: String, val age: Int)

fun main() {
 // will fail to compile, we do not have a no-arg constructor
 // val p1 = Person1()

 val p2 = Person1(“Jeff”, 35) // this works
 println(“${p2.name} is ${p2.age} years old")
}

9
https://pl.kotl.in/UWnr3AORH

https://pl.kotl.in/UWnr3AORH
https://pl.kotl.in/UWnr3AORH
https://pl.kotl.in/UWnr3AORH

Multiple Constructors
class Person(val name: String) { // primary

var children = mutableListOf<Person>()
constructor(name: String, parent: Person) : this(name) { // secondary, delegates

parent.children.add(this)
}

}

fun main() {
val parent = Person("Mary") // primary constructor invoked
val child1 = Person("Cameron", parent) // secondary constructor invoked
val child2 = Person("Sally", parent)
for (child in parent.children) {

println(child.name)
}

}
10

https://pl.kotl.in/Yj9mDih8h

https://pl.kotl.in/Yj9mDih8h
https://pl.kotl.in/Yj9mDih8h
https://pl.kotl.in/Yj9mDih8h

What can constructors do?
Primary constructors are only meant to initialize properties!
Use `init` blocks to contain other code that must run.

class InitOrderDemo(name: String) {
val first = "$name".uppercase()
init {
println("First: $first")

}

val second = "${name.length}"
init {
println("Second: $second")

}
}
val a = InitOrderDemo("Jeff") // First: Jeff, Second: 4

11
https://pl.kotl.in/cqKy6V1WL

https://pl.kotl.in/cqKy6V1WL

Constructor Delegation
class InitOrderDemo() { // 3

var name:String = "Default"
val first = "$name".uppercase()

init { // 4
println("First init: $first")

}

constructor(name: String) : this() { // 2
this.name = name // 5
println("Second constructor: $name") // can do in a secondary constructor

}
}
val a = InitOrderDemo("Jeff") // 1

12
https://pl.kotl.in/M8kJljKX6

https://pl.kotl.in/M8kJljKX6
https://pl.kotl.in/M8kJljKX6
https://pl.kotl.in/M8kJljKX6

Inheritance
Kotlin supports a single-inheritance model. Although you can inherit from any number of
interfaces, you cannot inherit from more than one implementation class.
By default, classes and methods are ‘closed‘ to inheritance. If you want to extend a class or method,
you need to mark it as ‘open‘ for inheritance.

open class Person(val name: String) {
 open fun hello() = "Hello, I am $name"
}

class PolishPerson(name: String) : Person(name) {
 override fun hello() = "Dzien dobry, jestem $name"
}

13

Why this design?

Interfaces
An interface is a list of methods that together describe a set of expected behaviours
for a class. Classes that implement an interface promise to implement these
methods.

interface Shape {
 fun dimensions(w: Double, h: Double)
 fun area(): Double
}

class Rectangle : Shape {
 var width: Double = 0.0
 var height: Double = 0.0
 override fun dimensions(w: Double, h: Double) { width = w; height = h }
 override fun area(): Double { return width * height }
}

14
https://pl.kotl.in/wdHN9HHqq

https://pl.kotl.in/wdHN9HHqq
https://pl.kotl.in/wdHN9HHqq
https://pl.kotl.in/wdHN9HHqq

Abstract Classes
An abstract class is meant to be a base or parent class in a class hierarchy. Unlike
an interface, abstract classes can have constructors, fields and default
implementations.
abstract class Shape(var width: Double, var height: Double) {
 fun dimensions(w: Double, h: Double) { width = w; height = h; // more code … }
 abstract val area: Double

}
class Rectangle(width: Double, height: Double) : Shape(width, height) {
 override val area: Double
 get() = width * height

}

fun main() {
 val rect = Rectangle(10.0,20.0)
 print(rect.area) // 200.0

}

15

We don’t have to override the dimensions() function, but we do
have to override the area which is abstract. We also override the
getter to calculate the area!

https://pl.kotl.in/OGdn3CsGX

https://pl.kotl.in/OGdn3CsGX
https://pl.kotl.in/OGdn3CsGX
https://pl.kotl.in/OGdn3CsGX

Data Classes
A data class is a special type of class which primarily exists to hold data. Classes
like this are more common than you expect – we often create trivial classes to just
hold data, and Kotlin makes it very easy. Data classes provide built-in features:

data class Person(val name: String, var age: Int)
val mike = Person("Mike", 23)

// toString() displays all properties
print(mike.toString()) // Person(name=Mike, age=23)

// equals that compares properties (value equality by default!)
print(mike == Person("Mike", 23)) // True
print(mike == Person("Mike", 21)) // False

16

Data Classes
// hashCode based on primary constructor properties
val hash = mike.hashCode()
print(hash == Person("Mike", 23).hashCode()) // T
print(hash == Person("Mike", 21).hashCode()) // F

// deconstruction based on properties
val (name, age) = mike
print("$name $age") // Mike 23

// copy that returns a copy of the object
// with concrete properties changed
val jake = mike.copy(name = "Jake")

17
https://pl.kotl.in/Yx5YTC2k_

https://pl.kotl.in/Yx5YTC2k_
https://pl.kotl.in/Yx5YTC2k_
https://pl.kotl.in/Yx5YTC2k_

ENUM Classes
Enums in Kotlin are classes, so enum classes support type safety. This means
that we can use them as expected, but we can also use them in new ways,
like in a ‘when’ expression.

enum class Suits {
 HEARTS, SPADES, DIAMONDS, CLUBS

}

val suit = Suits.SPADES
val color = when(suit) {
 Suits.HEARTS, Suits.DIAMONDS -> "red"
 Suits.SPADES, Suits.CLUBS -> "black"

}
println(color) // black

18
https://pl.kotl.in/1nCOM_D59

https://kotlinlang.org/docs/enum-classes.html
https://pl.kotl.in/1nCOM_D59
https://pl.kotl.in/1nCOM_D59
https://pl.kotl.in/1nCOM_D59

Cool Stuff
Extension functions
Add a method to an already existing class.
fun Int.isEven() = this % 2 == 0
> 5.isEven() // false

Operator overloading
We can overload standard operators (but not arbitrary ones!)
data class Point(val x: Int, val y: Int)
operator fun Point.unaryMinus() = Point(-x, -y)

val point = Point(10, 20)
println(-point) // "Point(x=-10, y=-20)"

19
https://pl.kotl.in/PZ_uWl8Kl

https://pl.kotl.in/PZ_uWl8Kl
https://pl.kotl.in/PZ_uWl8Kl
https://pl.kotl.in/PZ_uWl8Kl

Reference

• Dave Leeds. 2025. Dave Leeds on Kotlin. Online.
• Dave Leeds. 2025. Kotlin: An Illustrated Guide. TypeAlias Studios LLC.

ISBN 979-8992796605.
• JetBrains. 2025. Kotlin Documentation. Online.
• Roman Elizarov, et al. 2024. Kotlin in Action. 2nd edition. Manning

Publications. ISBN 9781617299605.

20

https://typealias.com/start/
https://kotlinlang.org/docs/home.html

