
Kotlin Part 3:
Functional Programming

CS 346 Application
Development

1

What is functional programming?

• Functional Programming (FP) is a declarative programming style where
computation is expressed as a series of functions that return values.
• Complementary to other styles i.e., can co-exist alongside an object-

oriented or imperative style.
• There are real benefits:

• Robustness
• Expressivity
• Clarity

2

Don’t worry, we’re not bringing back Racket.

First-class functions means that functions are treated as a
type. We can assign functions to variables, pass them
parameters to another function, return functions etc.

• A higher-order function is a function that either takes a
function as an argument or returns a function

Pure functions are functions that have no side effects. More
formally, the return values of a pure function are identical
for identical arguments (i.e. they don't depend on any
external state for their return value).

The Functional Programming Paradigm.
https://towardsdatascience.com

3

Immutable data suggests that we do not modify data in-place.
We prefer immutable data that cannot be accidentally changed, especially as a side-effect.

Lazy evaluation means that we only evaluate as expression when we need to operate on it.

https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/Higher-order_function
https://en.wikipedia.org/wiki/Higher-order_function
https://en.wikipedia.org/wiki/Higher-order_function
https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Side_effect_(computer_science)
https://towardsdatascience.com/
https://en.wikipedia.org/wiki/Immutable_object
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation

Functional Kotlin
Kotlin is a hybrid language that supports OO, FP and Imperative styles.
• Not a “pure” functional language (but those are rare/challenging).

How can we write Kotlin-style functional code? Simplest way.
• Avoid unintended mutation and side effects

• Use `val` instead of `var`
• Avoid global variables for carrying program state, as much as you can.
• Favor pure functions that are free of side-effects i.e. avoid inline modification.

• First-class functions & pure functions
• Explicitly functional expressions and constructs.
• We’ll spent most of this lecture on this topic!

4

Function Types
Functions are types in Kotlin, and we can use them anywhere we would expect to
use a regular type.

We can:
• assign functions to variables,
• pass functions as arguments to other functions, or
• return a function from a function.

Example is courtesy of Dave Leeds on Kotlin.

5

https://typealias.com/

Function Types
Bert's Barber shop is creating a program to calculate the cost of a haircut, and they end
up with 2 almost-identical functions.

fun calculateTotalWithFiveDollarDiscount(initialPrice: Double): Double {
 val priceAfterDiscount = initialPrice - 5.0
 val total = priceAfterDiscount * taxMultiplier
 return total

}

fun calculateTotalWithTenPercentDiscount(initialPrice: Double): Double {
 val priceAfterDiscount = initialPrice * 0.9
 val total = priceAfterDiscount * taxMultiplier
 return total

}

6

Identical
except for
this code.

If we could somehow pass in that line of code as an argument, then we
could replace both with a single function that looks like this.
• What type do we use here to represent this function?

// applyDiscount = initialPrice * 0.9, or
// applyDiscount = initialPrice - 5.0

fun calculateTotal(initialPrice: Double, applyDiscount: ???): Double {
 val priceAfterDiscount = applyDiscount(initialPrice)
 val total = priceAfterDiscount * taxMultiplier
 return total

}

Function type?

7

What is the type of this function?

// this is the original function signature, for reference
fun discountFiveDollars(price: Double): Double = price - 5.0

// this function accepts a Double and returns a Double.
// we use this format when specifying the type
val discountFiveDollars: (Double) -> Double = { … }

8

Now that we know the type format, we can even assign a variable as a
function reference and use it to invoke our function!

// get a function reference
fun discountFiveDollars(price: Double): Double = price - 5.0
val applyDiscount = ::discountFiveDollars

// invoke it
val discountedPrice: (Double) -> Double = applyDiscount(20.0) // 15.0

// type inference also works
val discountedPrice = applyDiscount(20.0) // 15.0

9

Our original problem? We can pass one of our functions as a parameter.

fun discountFiveDollars(price: Double): Double = price - 5.0 // signatures match
fun discountTenPercent(price: Double): Double = price * 0.9
fun noDiscount(price: Double): Double = price

fun calculateTotal(initialPrice: Double, applyDiscount: (Double) -> Double): Double {
 val priceAfterDiscount = applyDiscount(initialPrice)
 val total = priceAfterDiscount * taxMultiplier
 return total
}

val withFiveDollarsOff = calculateTotal(20.0, ::discountFiveDollars) // $16.35
val withTenPercentOff = calculateTotal(20.0, ::discountTenPercent) // $19.62
val fullPrice = calculateTotal(20.0, ::noDiscount) // $21.80

10

Return a function from a function
Instead of typing in the name of the function each time he calls calculateTotal(),
Bert would like to just enter the coupon code from the bottom of the coupon that
he receives from the customer.
To do this, he creates a function that accepts the coupon code and returns the
correct discount function.

// accepts a String argument, and return a function
fun discountForCouponCode(couponCode: String): (Double) -> Double =
when (couponCode) {
 "FIVE_BUCKS" -> ::discountFiveDollars
 "TAKE_10" -> ::discountTenPercent
 else -> ::noDiscount

}

11

Function Literals (Lambdas)

We can use this same notation to express the idea of a function literal,
or a function as a value.
val applyDiscount: (Double) -> Double = { price: Double -> price - 5.0 }
val applyDiscount = { price: Double -> price - 5.0 } // type inferred

The code on the RHS of this expression is a function literal, which
captures the body of this function. We also call this a lambda. A
lambda is just an anonymous function, written in this form:

• the function is enclosed in curly braces { }
• the parameters are listed, followed by an arrow
• the body comes after the arrow

12

{ price: Double -> price – 5.0 }

A lambda expression

The implicit ‘it’
In cases where there’s only a single parameter for a lambda, you can omit the
parameter name and the arrow. When you do this, Kotlin will automatically make
the name of the parameter `it`.

Original forms:
• val applyDiscount: (Double) -> Double = { price: Double -> price - 5.0 }
• val applyDiscount = { price: Double -> price - 5.0 } // type inferred

Shortened forms:
• val applyDiscount: (Double) -> Double = { it - 5.0 }

13

Lambdas as Arguments
We can rewrite our earlier example to use lambdas instead of function references:

fun calculateTotal(initialPrice: Double, applyDiscount: (Double) -> Double): Double {
 val priceAfterDiscount = applyDiscount(initialPrice)
 val total = priceAfterDiscount * taxMultiplier
 return total
}
val withFiveDollarsOff = calculateTotal(20.0, { it - 5.0 }) // $16.35
val withTenPercentOff = calculateTotal(20.0, { it * 0.9 }) // $19.62
val fullPrice = calculateTotal(20.0, { it }) // $21.80

14

Trailing lambda
In cases where function’s last parameter is a function type, you can move the
lambda argument outside of the parentheses to the right, like this:

val withFiveDollarsOff = calculateTotal(20.0) { it - 5.0 } // $16.35
val withTenPercentOff = calculateTotal(20.0) { it * 0.9 } // $19.62
val fullPrice = calculateTotal(20.0) { it } // $21.80

This is meant to be read as two arguments: one parameter inside the
brackets, and the lambda as the second parameter, outside the brackets.
This syntax, where the lambda function is placed outside of the brackets, is
called a trailing lambda.

15

https://kotlinlang.org/docs/lambdas.html

Returning lambdas

We can easily modify our earlier function to return a lambda as well.

fun discountForCouponCode(couponCode: String): (Double) -> Double =
when (couponCode) {
 "FIVE_BUCKS" -> { price -> price - 5.0 }
 "TAKE_10" -> { price -> price * 0.9 }
 else -> { price -> price }

}

16

Lambdas & Collections
filter produces a new list of those elements that return true from
a predicate function.
val list = (1..100).toList()
val filtered = list.filter { it % 5 == 0 } // 5 10 15 20 ... 100

map produces a new list that is the results of applying a function
to every element.
val list = (1..100).toList()
val doubled = list.map { it * 2 } // 2 4 6 8 ... 200

reduce accumulates values starting with the first element and
applying an operation to each element from left to right.
val strings = listOf("a", "b", "c", "d")
val str = strings.reduce { acc, string -> acc + string }) // abcd

17

forEach calls a function for every element in the collection.
val fruits = listOf("advocado", "banana", "cantaloupe")
fruits.forEach { print("$it ") } // advocado banana cantaloupe

take returns a collection containing just the first n elements. drop returns a
new collection with the first n elements removed.
val list = (1..50)
val first10 = list.take(10) // 1 2 3 ... 10
val last40 = list.drop(10) // 11 12 13 ... 50

first and last return those respective elements. slice allows us to extract a
range of elements into a new collection.
val list = (1..50)
val even = list.filter { it % 2 == 0 } // 2 4 6 8 10 ... 50
even.first() // 2
even.last() // 50
even.slice(1..3) // 4 6 8

18

Reference

• Leeds. 2025. Dave Leeds on Kotlin. Online.
• Leeds. 2025. Kotlin: An Illustrated Guide. TypeAlias Studios LLC.

ISBN 979-8992796605.
• JetBrains. 2025. Kotlin Documentation. Online.
• Elizarov, et al. 2024. Kotlin in Action. 2nd edition. Manning

Publications. ISBN 9781617299605.
• Vermeulen et al. 2021. Functional Programming with Kotlin.

Manning. ISBN 978-1617297168.

19

https://typealias.com/start/
https://kotlinlang.org/docs/home.html

