
Build Systems
& Gradle

CS 346 Application
Development

1

Build Systems
A build system is a system that manages the process of delivering software.
This includes compilation, linking, testing, packaging and any other required
steps. Build systems have become more complex and capable over time.
• e.g., Maven for Java; Cargo for Rust; Cmake/Scons/Bazel for C++.

Characteristics of a useful build system:
• It provides consistency in builds and build results.
• It is expressive so that you can define any custom tasks e.g., zip a file.
• You can automate the build process to avoid user errors.
• It integrates with other systems so that you can delegate responsibility

• e.g., remote test under a different OS.

2

What is Gradle?
Gradle is a modern build system for Java/Kotlin.
• It's popular in the Kotlin and Java ecosystems, used for Android projects.
• It's cross-platform and programming language agnostic.
• It's open source and has a large community of users.

Three main areas of functionality:
1. Managing build tasks: Manage build tasks e.g., compile and link, run tests.
2. Build configuration: Define and manage how these tasks are executed.
3. Dependency management: Manage external libraries and dependencies.

3

Getting Started
Gradle project structure

4

Gradle is bundled with IntelliJ IDEA.

To create a Gradle project:

1. Use the `Project Wizard`.
2. Select `Gradle` for your Build

system.
3. Select `Kotlin` for your Gradle DSL.
4. Click `Create`.

See the course website:

Reference > Programming
> Create a Gradle Project

5

https://student.cs.uwaterloo.ca/~cs346/1259/reference/programming/gradle-project/

Basic Project Structure

build.gradle.kts is the main config file.
empty.iml is the IntelliJ config file.
gradle: contains gradle wrapper config.
gradlew & gradlew.bat are scripts.
settings.gradle.kts is a top-level
project config file.
src: contains source code

• src/main/kotlin code module
• src/test/kotlin unit test module

.
├── build.gradle.kts
├── empty.iml
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradle.properties
├── gradlew
├── gradlew.bat
├── settings.gradle.kts
└── src
 ├── main
 │ ├── kotlin
 │ │ └── Main.kt
 │ └── resources
 └── test
 ├── kotlin
 └── resources

source code

6

Build Tasks
How to execute Gradle tasks.

7

Gradle Tasks
Tasks are built-in commands that you can run,
that are specific to your project.
They can be executed either:
• From the command-line
• From the Gradle menu in Intellij IDEA

Command gradle tasks, run from the
command-line:

$./gradlew clean
$./gradlew build
$./gradlew run

In IntelliJ IDEA: View > Tool Windows > Gradle

8

Gradle Wrapper
At the top-level of your project's directory structure are two scripts:
• `gradlew` for Unix users, and
• `gradlew.bat` for Windows users

These are Gradle wrapper scripts. You can use them to run Gradle tasks
without having to install Gradle on your machine.
• Pass them command-line arguments.
• The scripts will download Gradle for you, install it, and then run the

commands using that version of Gradle.

$./gradlew build

Is this a good idea? Why not just install Gradle manually?
9

Plugins
• Gradle comes with a small number of predefined tasks. You can

add additional tasks to your project as plugins.
• A plugin is a collection of related tasks that have been bundled

• `java` plugin - adds language support, and
• `application` plugin - adds support for running a console app.

You add other plugins in your build.gradle.kts file.

10

plugins {
 application
 kotlin("jvm") version "2.0.10"
}

You probably
won’t need
to do this.

Build Configuration
How to manage your build configuration.

11

Config files
build.gradle.kts - module specific
• It is possible to have multiple modules

(e.g., app/, service/). Each of these
would have its own build.gradle.kts
file specific to that type of module.

• This example has a single module, at the
root.

settings.gradle.kts - project level.
• It contains settings that apply to all

modules.

.
├── build.gradle.kts
├── empty.iml
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradle.properties
├── gradlew
├── gradlew.bat
├── settings.gradle.kts
└── src
 ├── main
 │ ├── kotlin
 │ │ └── Main.kt
 │ └── resources
 └── test
 ├── kotlin
 └── resources

12

settings.gradle.kts

This is the top-level configuration file. You don't need to modify
this for single-target projects.

// list any plugins that you want to use across all modules
plugins {
 id("org.gradle.toolchains.foojay-resolver-convention") version "0.5.0"
}

// top-level descriptive name
rootProject.name = "project-name"

settings.gradle.kts

13

build.gradle.kts

This is the detailed build
configuration. Modify it to:

• Add a new dependency (i.e. library)
• Add a new plugin (i.e. custom tasks)
• Update the version number of a

product release.

• Don’t expect to create the
perfect config file right-away.
• Start with the one generated by

IntelliJ IDEA.
• Modify as you add dependencies or

make changes.

// needed for desktop
plugins {
 kotlin("jvm") version ”2.0.10"
}

// product release info
group = "org.example"
version = "1.0.0"

// location to find libraries
repositories {
 mavenCentral()
}

// add libraries here
dependencies {
 testImplementation(`org.jetbrains.kotlin:kotlin-test`)
}

tasks.test {
 useJUnitPlatform()
}

// java version
kotlin {
 jvmToolchain(21)
}

build.gradle.kts
14

Dependencies
How to manage project dependencies.

15

What are dependencies?
In this context, dependencies are external libraries to provide functionality
e.g., networking, user interfaces.
• They need to be downloaded and added to your project to be useful.
• A large challenge of any build system is managing these dependencies. i.e.,

• Making sure that you have the correct version of a library,
• Including dependencies that library might need (called transitive dependencies).
• Making sure that the library is compatible with the rest of your software, and that it

doesn't introduce any security vulnerabilities.

• In Gradle, you specify your dependencies in your build scripts.
• Gradle will download them from an online repository as part of your build process.

16

Finding dependencies
• You can search Maven Central or use a package manager like this klibs.io.
• Pay attention to supported platforms: does it work on your platform?

17

https://klibs.io/

Adding Dependencies
You add a specific module or dependency by adding it into the dependencies
section of the build.gradle.kts file. Dependencies need to be specified
using this syntax:

group-name: module-name: version-number

We can often copy and paste the dependency line from the package
information page directly into our build.gradle.kts

dependencies {
 implementation("io.coil-kt.coil3:coil-compose:3.1.0")
}

group-name module-name version

18

Version Catalogs
• One challenge to using a lot of dependencies is keeping track of the

versions of libraries that you are using.
• Gradle has a feature called version catalogs, which is a centralized

file that contains a list of libraries and their versions.
• Gradle will automatically keep versions up-to-date using this file.
• In Gradle 7.x or later, the version catalog is contained in a

file libs.versions.toml in your gradle/ project directory.

• You use the dependencies defined in the version catalog in your build
config files.

https://docs.gradle.org/current/userguide/version_catalogs.html

19

https://docs.gradle.org/current/userguide/version_catalogs.html
https://docs.gradle.org/current/userguide/version_catalogs.html
https://docs.gradle.org/current/userguide/version_catalogs.html
https://docs.gradle.org/current/userguide/version_catalogs.html
https://docs.gradle.org/current/userguide/version_catalogs.html
https://docs.gradle.org/current/userguide/version_catalogs.html

[versions]
guava = "32.1.3-jre"
junit-jupiter = "5.10.1"

[libraries]
guava = { module = "com.google.guava:guava", version.ref = "guava" }
junit-jupiter = { module = "org.junit.jupiter:junit-jupiter",
version.ref = "junit-jupiter" }

gradle/libs.versions.toml

dependencies {
 // This dependency is used by the application.
 implementation(libs.guava)
}

build.gradle.kts

20

Types of Gradle projects
Getting started with a new project.

21

Single Project Structure
The top-level module is defined in the root of the project.
├── build.gradle.kts
├── src
│ ├── main
│ │ ├── kotlin
│ │ └── resources
│ └── test
│ ├── kotlin
│ └── resources
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradlew
├── gradlew.bat
└── settings.gradle.kts

Configuration files are at the top-level.
Source tree is also at the root.

This is a single module, loosely defined.

IntelliJ: New Project > Kotlin

Build system: Gradle
Gradle DSL: Kotlin
Generate multi-module build: unchecked

22

Multi-Project Structure

├── app/
│ ├── build.gradle.kts
│ └── src
│ ├── main
│ │ ├── kotlin
│ │ └── resources
│ └── test
│ ├── kotlin
│ └── resources
├── gradle/
├── gradlew
├── gradlew.bat
├── settings.gradle.kts
└── util/
 ├── build.gradle.kts
 └── src
 ├── main
 │ ├── kotlin
 │ └── resources
 └── test
 ├── kotlin
 └── resources

`app` is the first module.
`util` is a second module.
• build.gradle.kts is specific to each module.

Why 2 modules?
• Different platforms e.g., android, jvm
• Different purposes e.g., one could be

published as a library, the other as an app.

IntelliJ: New Project > Kotlin

Build system: Gradle
Gradle DSL: Kotlin
Generate multi-module build: checked

A “better” structure moves the source code into multiple modules.

23

KMP Project Structure
The project breaks down the source code
into two main projects.
• composeApp includes all Compose code. It

is further split into android, common,
desktop and iOS.
• This is where you add source code.

• iosApp includes the iOS project and
configuration files, used to build and
package using Xcode and other macOS
tools.
• Integration point for Kotlin/iOS.
• You probably shouldn’t touch this!

.
├── build.gradle.kts
├── composeApp
│ ├── build.gradle.kts
│ └── src
│ ├── androidMain
│ ├── commonMain
│ ├── desktopMain
│ └── iosMain
├── gradle
├── gradle.properties
├── iosApp
│ ├── Configuration
│ │ └── Config.xcconfig
│ ├── iosApp
│ │ ├── Assets.xcassets
│ │ ├── ContentView.swift
│ │ ├── Info.plist
│ │ ├── Preview Content
│ │ └── iOSApp.swift
│ └── iosApp.xcodeproj
│ └── project.pbxproj
├── local.properties
└── settings.gradle.ktsIntelliJ: New Project > Kotlin Multiplatform

24

Instructions: How to create a Gradle project

Reference > Programming > Create a Gradle Project
25

Reference

• Gradle.org. 2024. Gradle User Manual.
• Gradle.org. 2025. Version Catalogs.
• Philipp Lackner. 2025. The Ultimate Gradle Kotlin Beginner’s Crash Course
• Tom Gregory. 2024. Gradle Build Bible.

26

https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/version_catalogs.html
https://www.youtube.com/watch?v=RCRQlz78wCg
https://tomgregory.com/gradle/gradle-build-bible/

