Graphical
User Interfaces (GUIs)

CS 346 Application
Development

iOS 26 home screen Apple Watch face

(.} 4:42 PM

CLANK:

RIFT)APART

Must see

IRATCHET
{& CLANIK

DB0**30~00@80- " "GR2AM® U

Playstation 5 home screen

macOS Tahoe desktop

Graphical User Interfaces

Graphical output

* Drawing surfaces e.g., arbitrary graphics.
 Windows, screens.
* Widgets e.g., buttons, menus, lists.

Point-and-click interaction

e User “points-and-clicks” using some input
device (e.g., mouse, touchpad, finger).

» Keyboard support for entering text.
Devices include:
* Touch input: iPhone, Android

* Mouse, Trackpad: macOS, Windows, Linux
* Joystick etc.: Playstation, Steam Deck

@ Autosae (D (D D v
Strikethrough
Home Insert Draw Design Transitions Animations

= v 2<° _Eﬂ v Layoutyy Tw Cen MT (Body)
D E@ v @ Reset
aste

e =
Slide [J Section v

TomSPNCE =

*=\\NADELS

S ias

=

www.classicgaming.cc

What do we require?

To build an interactive graphical user interface, we
need:

1. A way to output graphics.
* “Raw” graphics e.g., filling pixel-by-pixel.
* “Widgets” or reusable components.

2. A way to capture and interpret user
interactions with the GUI.

* e.g., “clicking” on buttons, “dragging” the mouse-
cursor to move an object, “right-clicking” for a menu.

* e.g., closing or resizing a window.

B It's-a CS349! - O

Mario can be drawn using a
pixel-based model.

Concept: Scene Graph

In GUI development, we represent graphical content as a tree of displayable
elements (e.g., reusable components). This tree is called a scene graph.

Containers contain other classes.
Nodes are leafs in the graph.

Appearance

v Title

v Body

v Slide Number Appearance

Ul Panel

Slide Number

Scene Graph for this panel

Concept: Events

Interaction relies on events being generated and passed around to
interested parts of your application.

* An event is simply a message generated by the system to indicate
that something has happened.

* Examples:
- MouseMoved: Indicates that the pointer has been repositioned.
- MouseClicked: The user has clicked on something with a mouse.

- KeyPressed: A key on a keyboard has been pressed.

GUI = Graphics (scene graph) + Interactivity (events)

Managing Everything? GUI Toolkits

A GUI toolkit is a framework which provides this functionality.

* Creating and managing application windows, with standard
functionality e.g. overlapping windows, min/mayx, resizing.

* Providing reusable widgets that can be combined in a window to build
applications. e.g. buttons, lists, toolbars, images, text views.

* Adapting the interface to changes in window size or dimensions.
* Drawing everything!
* Managing standard and custom events.

* Generating events and responding to them in code.
* Handling user interaction with hardware e.g., keyboards, touch.

https://en.wikipedia.org/wiki/Widget_toolkit
https://en.wikipedia.org/wiki/Graphical_widget

Imperative Toolkits

Historically, most GUI frameworks have been imperative:

* Ul objects are just classes with properties for position (x,y),
dimensions (w,h), visual properties. e.g. Button, Scrollbar, Panel.

* Code places elements on-screen and controls their appearance.
* Code determines how the user interface behaves based on input.

* An imperative toolkit relies on custom code to change the user
interface in response to application state changes.
* This is a large part of the application’s complexity!
* Examples: Swing, Qt, JavaFX, MFC, Gtk.

Example: Imperative

class Main : Application() {
override fun start(stage: Stage) { Kotlin+JavaFX
val list = ListView<String>()
list.items.addAll("One", "Two", "Three", "Four", "Five")
list.selectionModel.selectIndices(0)
list.selectionModel.selectedItem
list.selectionModel.selectedItemProperty().addListener { _, old, new ->
println("$oldValue -> $newValue")

}
stage.title = "List Demo"
stage.scene = Scene(StackPane(list), 400.0, 300.0)

false

stage.isResizable
stage.show()

Declarative Toolkits

Many modern toolkits are declarative instead of imperative:

* A declarative paradigm explains what to display. The compiler figures
out how to display it based on the current state

e e.g. is the button enabled?
e e.g., is there data in the list that the user can select?

* A declarative toolkit automatically manages how the Ul reacts to
state changes. It infers how the Ul presents state to the user.
* Examples: React, SwiftUl, Flutter, Compose

Examples of toolkits

Single-platform are designed for one platform only.
* WTL - Windows desktop, using C++
e Cocoa — Mac desktop, using C++
* GTK - Linux, using C.

Cross-platform toolkits are designed for multiple platforms.
* Swing — Mac, Windows, Linux desktop using Java
* Flutter — any desktop, Android and iOS, Web, using Dart
e Qt — any desktop, Android, using C++ or Python.
* Compose —any desktop, Android and iOS, Web, using Kotlin/Swift/JS.ik

https://en.wikipedia.org/wiki/Windows_Template_Library
https://en.wikipedia.org/wiki/Windows_Template_Library
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/GTK
https://en.wikipedia.org/wiki/GTK
https://en.wikipedia.org/wiki/Swing_(Java)
https://en.wikipedia.org/wiki/Swing_(Java)
https://docs.flutter.dev/ui
https://docs.flutter.dev/ui
https://www.qt.io/product/framework
https://www.qt.io/product/framework
https://www.jetbrains.com/compose-multiplatform/
https://www.jetbrains.com/compose-multiplatform/

Compose Toolkit

A declarative, multi-platform toolkit.

What is Compose?

Compose is a declarative, cross-platform
toolkit.

* It was designed by Google, and released
as JetPack Compose for Android in 2017.

Compose Multiplatform

* JetBrains ported Jetpac-k.Compose to Shared bus}ness logic
desktop, and released it in 2021 d o - .
as Compose Multiplatform, which] B Eaic I

supports macOS, Windows, Linux, iOS.
* Compose WASM is “on the way”.

i0OSAPIs [::| Android APIs

In this course we’ll focus on Compose for 5 i ;
Desktop and Android. T ———— T :

This is the rare case where we can use the https://www.jetbrains.com/lp/compose-multiplatform/
same toolkit for more than one platform!

13

https://developer.android.com/jetpack/compose
https://www.jetbrains.com/lp/compose-multiplatform/

FloraGoGo)
S

Todo
$667.00 a""je" i

https://github.com/JetBrains/c
https://qithub.com/androic

https://github.com/JetBrains/compose-multiplatform/
https://github.com/JetBrains/compose-multiplatform/
https://github.com/JetBrains/compose-multiplatform/
https://github.com/android/compose-samples
https://github.com/android/compose-samples
https://github.com/android/compose-samples

Creating a Compose project?

Desktop:
* IntelliJ > New Project > Compose Multiplatform

Android:
e Android Studio > New Project > Phone and Tablet > (Empty Activity)

Composables

The building blocks of any user interface.

16

Concept: Composable Function

* A key concept in Compose is the idea of a composable function (also just
called a composable). This is a small function that describes a part of your
user interface.

* Think of a composable function as a special kind of function that accepts
state and emits a user interface element.

* e.g., this function takes in a String and displays it on-screen by emitting a
Text element that will be displayed.

@Composable
fun Greeting(name: String) {
Text("Hello $name!™)

}

Characteristics of Composables

The function must be annotated with the @Composable annotation.
 Composable functions are fast, idempotent, and free of side effects!

* Composables do not return a value — they emit output directly into the
scene graph.

* Composable functions will often accept parameters, which are used to
format the composable before displaying it.

@Composable
fun Greeting(name: String) {
Text("Hello $name!™)

}

18

https://en.wikipedia.org/wiki/Idempotence

Composable Scope (1/2)

Let's display a window.

composable scope

fun main() = application {

Window(
title = "Hello Window",
onCloseRequest = ::exitApplication
) o
Greeting("Compose™")
}.
@Composable

fun Greeting(name: String) {

}.

Text("Hello $name!")

The application function defines a Composable
Scope - think of it like a wrapper for the scene
graph.

Composable functions must be called from a
Composable Scope, or from other Composables.

These composables describe a scene graph.

Window
l——» Greeting

—— Text

19

Composable Scope (2/2)

Here’s the resulting window.
o () Hello Window

fun main() = application { Hello Compose!

Window (
title = "Hello Window",
onCloseRequest = ::exitApplication
) o
Greeting("Compose")
y
@Composable
fun Greeting(name: String) { The Compose toolkit handles standard
Text("Hello $name!") functionality e.g. min/max buttons, titlebar. You
b customize the composables by passing in
parameters.

See GitLab repo: /lectures/compose/minimumWindow .

https://git.uwaterloo.ca/cs346/lectures/compose

Using Composables

* With compose, you construct user interfaces by combining composables
together to form a scene graph.

* These can be built-in composables, or ones that you create.

* There are many built-in composables:
* Some composables act as containers and manage children composables.

* Other composables display data, and (some) provide interactivity for users.

* Because Compose is cross-platform, most composables work across all
supported platforms.
* e.g. the Text composable exists on both desktop and Android (it hasn’t been
reimplemented - it’s the same code).
* Composable Scope differs by platform e.g. application is desktop specific.
* We’ll continue to demo using Compose Multiplatform/desktop for now.

Properties

* Each composable has its own parameters that can be supplied to
affect its appearance and behaviour.

* These are exposed as named parameters.

* Examples:
* Text, textAlign, lineHeight, fontName, fontSize are common with text.
* Color is a property shared by most Composables.
 Style lets you use a particular design attribute that is included in the theme.

* Modifier is a class that contains parameters that are commonly used across
elements. This allows us to set a number of parameters within an instance of

a Modifier.

Example: Text

A Text composable displays text.

@Composable
fun SimpleText() { :
Text(Widget Demo

text = “Widget Demo”,
color = Color.Blue,
fontSize = 30.sp,
style = MaterialTheme.typography.h2,
maxLines = 1

Example: TextField, OutlinedText

A labelled text field

Label
val text = remember { mutableStateOf(”Hello") } Hello
TextField(
value = text.value
label = { Text("Label") }
)
Label
OQutlinedTextField(Hello C
value = text.value, €10 Lompose
label = { Text("Label™) }

24

Example: Image

An Image composable displays an image (by default, image is
loaded from your Resources folder).

@Composable i e
fun SimpleImage() { | ° @Fintroard
Ima ge (The Programmiers’ Credo: we do these things not
painter = painterResource("credo.jpg"), because they are easy, but because we thought they
contentDescription = null, WS G S
contentScale = ContentScale.Fit, o P
modifier = Modifier o
.height(150.dp)
.FillMaxWidth()
.clip(shape =
)

RoundedCornerShape(10.dp))

25

Example BUtton ® © @ Button Defpo

There are three main Button composables: Caption

* Button: A standard button with no caption.
* QutlinedButton: A button with an outline. Secondary. Caption
* TextButton: A button with a caption.

fun main() {
applicationd{
Window(onCloseRequest = ::exitApplication, title = "Button Demo")
{
Column(modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally)
{

Button(onClick = { println("Button clicked") }) { Text("Caption") }

OutlinedButton(onClick = { println("OutlinedBn clicked") }) { Text("Caption") }
TextButton(onClick = { println("TextButton clicked") }) { Text("Caption") }
}.

26

https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary

Example: Checkbox

A checkbox is a toggleable control that presents a true/false state.

* The OnCheckedChange function is called when the user interacts
with it (and in this case, the state represented by it is being stored
in a MutableState variable named isChecked).

@Composable
fun SimpleCheckbox() {
val isChecked = remember { mutableStateOf(false) }

Checkbox(
checked = isChecked.value |,
enabled = true,
onCheckedChange = { isChecked.value = it }

27

Example: Slider

A slider lets the user make a selection from a continuous range of
values. It's useful for things like adjusting volume or brightness or
choosing from a range of values.

@Composable
fun SliderMinimalExample() { PP Window Title
var sliderPosition by remember
{ mutableFloatStateOf(0f) }

Column { 0.0
Slider(R
value = sliderPosition,
onValueChange = { sliderPosition = it }
)
Text(text = sliderPosition.toString())

28

Demo

GitLab: /lectures/compose

* Open Composables.kt” and run the
main method

@ @ CS 346 Composables Demo

Press the button to interact!

Click here

Move the slider to resize the image.

29

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Layout

How do you control the placement of components?

30

Layout Composables

* Compose includes Layout Composables, whose purpose is to act as a
container to other composables. The three main layouts:

* Column, used to arrange widget elements vertically
* Row, used to arrange widget elements horizontally
* Box, used to arrange objects in layers

» Platforms may also have specific layouts e.g., Scaffold on Android.

======1
-=1
1
1
1
1
1
1
1
1
- -

Column Row Box

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary

31

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary

Column Composable

fun main() = application {

Window(
title = "CS 346 Compose Layout Demo",
onCloseRequest = ::exitApplication R
) {
SimpleColumn()
h 0
} Tﬂﬁ
Three
@Composable
fun SimpleColumn() {
Column(
modifier = Modifier.fillMaxSize(),
VeP‘Flca'LAr‘l“ar']gement - Ar‘li*angement -Center, . Arrangement: The direction the composable flows.
horizontalAlignment = Alignment.CenterHorizontally
) {
Text("0One")
4>
Text("Two")
Text("Three") Alignment: Orthogonal to the arrangement.
}

Row Composable

fun main() = application {
Window(
title = "CS 346 Compose Layout Demo",
onCloseRequest = ::exitApplication

) A

hy
hy

SimpleRow()

@Composable
fun SimpleRow() {

Row (
modifier = Modifier.fillMaxSize(),

horizontalArrangement = Arrangement.SpaceEvenly,
verticalAlignment = Alignment.CenterVertically

) {
Text("One")
Text("Two")

Text("Three")

o o CS 346 Compose Layout Demo

One Two Three

+—>

Arrangement: The direction the composable flows.

Alignment: Orthogonal to the arrangement.

33

Box Composable

fun main() = application {

Window(
title = "Custom Theme",
onCloseRequest = ::exitApplication,

state = WindowState(
width = 300.dp, height = 250.dp,
position = WindowPosition(50.dp, 50.dp)

)
)
SimpleBox()
¥
@Composable

fun SimpleBox() {
Box(Modifier.fillMaxSize() .padding(15.dp)) {
Text("Drawn first", modifier = Modifier.align(Alignment.TopCenter))
Text("Drawn second", modifier = Modifier.align(Alignment.CenterStart))
Text("Drawn third", modifier = Modifier.align(Alignment.CenterEnd))
FloatingActionButton(
modifier = Modifier.align(Alignment.BottomEnd),
onClick = {println("+ pressed")}

TeXt("+")

[] [) Custom Theme

Drawn first

Drawn second Drawn third

34

Nesting Layouts

This example contains a Column as the top-level composable, and a Row at
the bottom that contains Text and Button composables (which is how we
have the layout flowing both top-bottom and left-right).

[+] CS 346 Compose Layout Demo

This Window contains a Column, which in turn holds the elements below. A
Column positions things top-bottom, using properties that you set. We've
set this window to center content both vertically and horizontally.

This is a Button containing Text.

A block of text. We can apply formatting, themes and so on.

35

Lazy Layouts

e Columns and rows work fine for a small amount of data that fits on the
screen. What do you do if you have large lists that might be longer or wider
than the space that you have available?

* |deally, we would like that content to be scrollable. For performance
reasons, we also want large amounts of data to be lazy loaded: only the
data that is being displayed needs to be in-memory and other data is
loaded only when it needs to be displayed.

* Compose has a series of lazy components that work like this:
e LazyColumn
* LazyRow

* LazyVerticalGrid
* LazyHorizontalGrid

https://developer.android.com/jetpack/compose/lists

36

https://developer.android.com/jetpack/compose/lists
https://developer.android.com/jetpack/compose/lists
https://developer.android.com/jetpack/compose/lists

LazyRow Composable

fun main() = application {
Window(
title = "LazyColumn",
state = WindowState(width = 500.dp, height = 100.dp),
onCloseRequest = ::exitApplication

) A

}
¥

LazyRowDemo ()

@Composable
fun LazyRowDemo(modifier: Modifier = Modifier) {
LazyRow(
modifier = modifier.padding(4.dp).fillMaxSize(),
verticalAlignment = Alignment.CenterVertically

) A
items(45) o
Button(
onClick = { },
modifier = Modifier
.size(100.dp, 50.dp)
.padding(4.dp)
) A
Text(it.toString())
}
s
s

(JCN)
] o

LazyColumn

37

What is a view? A screen?

A screen is just a top-level composable, typically in its own View file.

@Composable

fun MainView() A{
TextRow()

}

@Composable
fun TextRow() {
Row (
modifier = Modifier.fillMaxSize(),
horizontalArrangement = Arrangement.SpaceEvenly,
verticalAlignment = Alignment.CenterVertically

) Text("0One")
Text("Two")
) Text("Three")

38

Navigation

How to transition between screens?

39

Why is navigation important?

* Complex applications will need multiple screens.

* The typical paradigm is navigating forward and backwards through a
series of screens e.g., web browser, mobile applications.

* We need programmatic support for:
* Switching to a new screen (and potentially passing data between them).

» Keeping track of the user’s navigation history, so that we can go
forward/backward through screens.

* Deep-linking so that we can “jump” to a particular place in the navigation list.
* Animations and transitions between screens.

Option 1: Simple navigation

What if you just want to switch between two screens?

* Easy solution: composable functions for each screen, and you just
choose which one to load based on application state.

* Involves ‘state-hoisting .

fun main() = application {
Window(
title = "Simple Navigation",
) {

var screen by remember { mutableStateOf<Screen>(Screen.SCREEN_A) } // track the current screen
when(screen) {
Screen.SCREEN_A -> ScreenA({ screen
Screen.SCREEN_B -> ScreenB({ screen

Screen.SCREEN_B }) // recompose on screen change
Screen.SCREEN_A })

// pass in button press code

}
}
}
@Composable
fun ScreenA(clickHandler: () -> Unit) {
Column {
Text("Screen A"))
Button(onClick = { clickHandler() }) { Text("Go to Screen B") } // button invokes lambda
}
}
@Composable
fun ScreenB(clickHandler: () -> Unit) {
Column {
Text("Screen B")
Button(onClick = { clickHandler() }) { Text("Go to Screen A") }
}
}

See: GitLab > samples > compose > navigation "

Option 2: Complex Navigation

* When just moving between screens isn’t sufficient.

* You want an external component to “decide” which screens to load.
* e.g., havigation bar that chooses what is displayed based on conditions.

* You need to pass complex data between screens.
* e.g., moving from a summary to detail view (list of customers, to one record).

* We have Navigation libraries to help with this:
* Jetpack Navigation for Android
 Compose Navigation for Desktop We will revisit
 Voyager multiplatform for Compose (3 party) in the Platform

lectures.

https://developer.android.com/guide/navigation/principles
https://developer.android.com/guide/navigation/principles
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-navigation.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-navigation.html
https://github.com/adrielcafe/voyager
https://github.com/adrielcafe/voyager

Voyager Navigation

Voyager — works on Android, iOS, desktop. It’s simpler to setup and use.

class HomeScreen : Screen { Voyager makes simple
navigation between screens
@Composable
override fun Content() { Very easy.
val screenModel = rememberScreenModel ()
/] ... If you don’t need a more
} complicated navigation model
+ i.e., deep-linking, then it may
class SingleActivity : ComponentActivity() { be a better choice.
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState) It’s also multiplatform so it
setContent { should work anywhere you can
; Navigator(HomeScreen()) compile a Kotlin application.
},

https://github.com/adrielcafe/voyager

Interactivity & State

How to manage state in your views.

onCloseRequest and onClick are

Adding Interactivity (1/4) el e b e ten’

those events occur.

Let’s revisit our Window demo and add an interactive Button.
[NON) Hello Window

fun main() = application {

title = "Hello Window",

onCloseRequest = ::exitApplication
) {
Greeting("Unpressed")
}
}
@Composable

fun Greeting(caption: String) { . :
Button(onClick = { println("Button pressed") }) {
Text(caption) Console Output
} > Task :run
} Button pressed
Button pressed
Button pressed

samples/compose > state/HelloState.kt 46

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Adding Interactivity (2/4)

Let’s have it try and update the Button caption, i.e. emitted Ul.

fun main() = application {
Window (
title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")
¥

by

@Composable
fun Greeting(caption: String) { // caption is a val
var localCaption = caption
Button(onClick = { localCaption = "Pressed" }) {
Text(localCaption)
¥

by

samples/compose > state/HelloState.kt

o o Hello Window

It doesn’t work. The Ul never

updates. Why?

47

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Concept: Recomposition

The declarative design of Compose means that it draws the screen once
when the application launches, and then only redraws elements when their
state changes.

Compose is effectively doing this:
* Drawing the initial user interface.
* Monitoring your state (aka variables) directly.

* When a change is detected in state, the portion of the Ul that relies on that state is
updated.

Compose redraws affected components by calling their Composable
functions. This process (detecting a change and then redrawing the Ul) is
called recomposition and is the main design principle behind Compose.

Adding Interactivity (2/4) - revisited

Let’s look at the example again:

fun main() = application {
Window (
title = "Hello Window",
onCloseRequest = ::exitApplication

) |

Greeting("Unpressed")
¥

by

@Composable

fun Greeting(caption: String) { // caption is a val

var localCaption = caption

Button(onClick = { localCaption = "Pressed" }) {

Text(localCaption)
¥

by

o o Hello Window

Why didn’t this work?
The onClick handler attempted to change
the text property of the Button.

This triggered Compose to call the Window
composable, which called the Button
composable, which initialized text to its initial
value...

samples/compose > state/HelloState.kt 49

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Adding Interactivity (3/4)

@ o Hello Window
We need the ‘remember’ keyword to help remember state!

fun main() = application {

Window (
title = "Hello Window",
onCloseRequest = ::exitApplication
) {
Greeting("Unpressed")
¥
}
@Composable
fun Greeting(caption: String) {)
var localCaption = remember { mutableStateOf(caption) } This works.

Button(onClick = {localCaption.value = "Pressed"}){

) Text(localCaption.value) remember tells Compose to not

1 reinitialize this variable (so we
don’t lose state on
recomposition).

50

Adding Interactivity (4/4)

@ o Hello Window
To make state observable, use a MutableState class.

fun main() = application {

Window (
title = "Hello Window",
onCloseRequest = ::exitApplication

) |

Greeting("Unpressed")
¥

by

@Composable
fun Greeting(caption: String) {
var localCaption by remember { mutableStateOf(caption) }

Button(onClick = {localCaption = "Pressed" }) { : N :
Text(Hello ${localCaption}) Using the by keyword with

} remember uses delegation. We
1 delegate get calls to the state’s value
property.

51

Remembering State

There are multiple classes to handle different types of State. Here's a partial list:

Class Helper Function State that it represents
MutableState mutableStateOf() Primitive
MutableList mutableListOf List
MutableMap<K, V> mutableMapOf(K, V) Map<K, V>
WindowState rememberWindowState() Window parameters e.g. size, position
DialogState rememberDialogState Similar to WindowState

Window(

title = "Hello Window",
> onCloseRequest = ::exitApplication

val caption by remember { mutableStateOf("Press me") }

Button(onClick = {caption = "Pressed!"}) {
Text(caption)

}

52

State Hoisting (1/2)

* A composable that uses remember is storing the internal state within
that composable, making it stateful (e.g. our Greeting composable
function above).

* However, storing state in a function can make it difficult to test and
reuse. It's sometimes helpful to pull state out of a function into a
higher-level, calling function. This process is called state hoisting.

53

State Hoisting (2/2)

fun main() = application { e Hello Window
Window(title = "Window", onCloseRequest = ::exitApplication) {
HelloScreen() Hello, Jeff
}_ Name
} (Jeff]
@Composable
fun HelloScreen() {
var name by remember { mutableState0f(”Jeff") } Our state is the name that the user is
, HelloContent(name = name, onNameChange = { name = it }) entering in the OutlinedTextField.
Instead of storing that in our
@Composable , , _ HelloContent composable, we keep
fun HelloContent(name: String, onNameChange: (String) -> Unit) { i“ble in th i
Column(modifier = Modifier.padding(16.dp)) { our state variable in the calling
Text(text = "Hello, $name") class HelloScreen and pass in the
OutlinedTextField(value = name, callback function that will set that
onValueChange = onNameChange, label = { Text("Name") }) |
! value.
}

54

Themes

How to customize it?

Material 3 Theme

A theme is a common look-and-feel
that is used when building software.

* Google includes their Material Design
theme in Compose, and by default,
composables will be drawn using the
Material look-and-feel. This includes
colors, opacity, shadowing and other
visual elements.

e https://m3.material.io/

* This is fantastic as an Android
developer: it’s very well specified and

complete. It also may not be what you

want on desktop, or iOS.

Q_ Searchreplies

g ==
§ ¥ 10 min ago

25it&

RIS ? BFRE T IRRBRARIRIE, <7 tbfi16y
AMARRT . BN ?

So Duri
‘y 20 min ago
Dinner Club

I think it's time for us to finally try that new nood
that doesn't use menus. Anyone else have other

o3, Lily MacDonald
\‘s? 2 hours ago

This food show is made for you

56

https://m3.material.io/
https://m3.material.io/
https://m3.material.io/
https://m3.material.io/

Q

®

Home

Get started

<>

Develop

O

Foundations

@

Styles

®

Components

=

Blog

Material
Design

Material 3 is the latest version of Google’s open-
source design system. Design and build beautiful,
usable products with Material 3.

Get started

News & launches

0 Bk

How to get Google Fonts

New API updates and website upgrades make
font integration easier than ever

Material Design at Google I/O

See the full list of Material talks and tutorials
launching at /0 2024

https://m3.material.io

Figma M3 Design Kit

Start designing and prototyping with the
complete M3 library of ready-made
components

57

https://m3.material.io/

Theming in Compose with Material 3

a Introduction
e Getting set up

e Material 3 Theming

° Color schemes

e Adding dynamic colors in
app

e Typography
e Shapes

e Emphasis

e Congratulations

(¥ a

(© 31 mins remaining @) English Sign in

= &

Default starting point of our app with the baseline them

e.

You'll create your theme with color scheme, typography, and shapes, and then apply it to your app's email list and

detail page. You will also add dynamic theme support to the app. By the end of codelab, you'll have support for both

color and dynamic themes for your app.

957 v
Q searchrepi [-)
Lt e * L bl *
Package shipped! Package shipped! Package shipped!
e Cucumbe Mask Fcit asshiped. [A—
(i ey ‘ - * -~ *
ey Brunch this weekend? Brunch this weckend?
_— 1 be in your neighborhood doing errands was. — 11 be in your neighborhood doing errands and was.
oo o cfch youfor cofe ths St 0. g o ctchyou ot coffe hs St 0.
froeds # (bt #
Bonjour from Paris Bonjour from Paris
[—— Hor s rot et oy i,
.. [o
) High school reunion? 2 Highschool reunion? s
High school reunion? e, (e
s
Q a8 =] an Q a8 =] an Q a =] a
L _____— | L ______— | I T—
Baseline Theme Color Theme Dynamic Theme

End point of the theming codelab with light color theming and light dynamic theming.

https://developer.android.com/codelabs/jetpack-compose-theming#0

58

https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming

To customize the default theme, we can just extend it and change its properties and then set our
application to use the modified theme.

@Composable
fun CustomTheme(
content: @Composable () -> Unit
) {
MaterialTheme (
colors = MaterialTheme.colors.copy(primary = Color.Red, secondary = Color.Magenta),
shapes = MaterialTheme.shapes.copy(
small = AbsoluteCutCornerShape(0.dp),
medium = AbsoluteCutCornerShape(0.dp),
large = AbsoluteCutCornerShape(0.dp)
)
) { content() }

fun main() = application {

Window/(
title = "Hello Window",
onCloseRequest = ::exitApplication,

state = WindowState(width=300.dp, height=250.dp, position = WindowPosition(50.dp, 50.dp))
) {
CustomTheme { .. }

Reference

» Google. 2024. Jetpack Compose Documentation.

» Google. 2024. Thinking in Compose.
» JetBrains. 2024. Compose Multiplatform Documentation.

« Phillip Lackner. 2024. The Compose Multiplatform Crash Course

60

https://developer.android.com/jetpack/compose
https://developer.android.com/develop/ui/compose/mental-model
https://www.jetbrains.com/lp/compose-multiplatform
https://www.youtube.com/watch?v=WT9-4DXUqsM

