
Graphical
User Interfaces (GUIs)

CS 346 Application
Development

2

Windows 11 desktop

macOS Tahoe desktop

Playstation 5 home screen

iOS 26 home screen Apple Watch face

Graphical User Interfaces
Graphical output
• Drawing surfaces e.g., arbitrary graphics.
• Windows, screens.
• Widgets e.g., buttons, menus, lists.

Point-and-click interaction
• User “points-and-clicks” using some input

device (e.g., mouse, touchpad, finger).
• Keyboard support for entering text.

Devices include:
• Touch input: iPhone, Android
• Mouse, Trackpad: macOS, Windows, Linux
• Joystick etc.: Playstation, Steam Deck

3

What do we require?

To build an interactive graphical user interface, we
need:
1. A way to output graphics.

• “Raw” graphics e.g., filling pixel-by-pixel.
• “Widgets” or reusable components.

2. A way to capture and interpret user
interactions with the GUI.
• e.g., “clicking” on buttons, “dragging” the mouse-

cursor to move an object, “right-clicking” for a menu.
• e.g., closing or resizing a window.

4

Mario can be drawn using a
pixel-based model.

Concept: Scene Graph
In GUI development, we represent graphical content as a tree of displayable
elements (e.g., reusable components). This tree is called a scene graph.

5

Containers contain other classes.
Nodes are leafs in the graph.

Concept: Events
Interaction relies on events being generated and passed around to
interested parts of your application.
• An event is simply a message generated by the system to indicate

that something has happened.
• Examples:

• MouseMoved: Indicates that the pointer has been repositioned.
• MouseClicked: The user has clicked on something with a mouse.
• KeyPressed: A key on a keyboard has been pressed.

GUI = Graphics (scene graph) + Interactivity (events)

6

Managing Everything? GUI Toolkits
A GUI toolkit is a framework which provides this functionality.
• Creating and managing application windows, with standard

functionality e.g. overlapping windows, min/max, resizing.
• Providing reusable widgets that can be combined in a window to build

applications. e.g. buttons, lists, toolbars, images, text views.
• Adapting the interface to changes in window size or dimensions.

• Drawing everything!
• Managing standard and custom events.

• Generating events and responding to them in code.
• Handling user interaction with hardware e.g., keyboards, touch.

7

https://en.wikipedia.org/wiki/Widget_toolkit
https://en.wikipedia.org/wiki/Graphical_widget

Imperative Toolkits
Historically, most GUI frameworks have been imperative:
• UI objects are just classes with properties for position (x,y),
dimensions (w,h), visual properties. e.g. Button, Scrollbar, Panel.
• Code places elements on-screen and controls their appearance.
• Code determines how the user interface behaves based on input.
• An imperative toolkit relies on custom code to change the user

interface in response to application state changes.
• This is a large part of the application’s complexity!
• Examples: Swing, Qt, JavaFX, MFC, Gtk.

8

Example: Imperative
class Main : Application() {
 override fun start(stage: Stage) {
 val list = ListView<String>()
 list.items.addAll("One", "Two", "Three", "Four", "Five")
 list.selectionModel.selectIndices(0)
 list.selectionModel.selectedItem
 list.selectionModel.selectedItemProperty().addListener { _, old, new ->
 println("$oldValue -> $newValue")
 }
 stage.title = "List Demo"
 stage.scene = Scene(StackPane(list), 400.0, 300.0)
 stage.isResizable = false
 stage.show()
 }
}

9

Kotlin+JavaFX

Declarative Toolkits
Many modern toolkits are declarative instead of imperative:
• A declarative paradigm explains what to display. The compiler figures

out how to display it based on the current state
• e.g. is the button enabled?
• e.g., is there data in the list that the user can select?

• A declarative toolkit automatically manages how the UI reacts to
state changes. It infers how the UI presents state to the user.
• Examples: React, SwiftUI, Flutter, Compose

10

Examples of toolkits
Single-platform are designed for one platform only.

• WTL - Windows desktop, using C++
• Cocoa – Mac desktop, using C++
• GTK - Linux, using C.

Cross-platform toolkits are designed for multiple platforms.
• Swing – Mac, Windows, Linux desktop using Java
• Flutter – any desktop, Android and iOS, Web, using Dart
• Qt – any desktop, Android, using C++ or Python.
• Compose – any desktop, Android and iOS, Web, using Kotlin/Swift/JS.

11

https://en.wikipedia.org/wiki/Windows_Template_Library
https://en.wikipedia.org/wiki/Windows_Template_Library
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/Cocoa_(API)
https://en.wikipedia.org/wiki/GTK
https://en.wikipedia.org/wiki/GTK
https://en.wikipedia.org/wiki/Swing_(Java)
https://en.wikipedia.org/wiki/Swing_(Java)
https://docs.flutter.dev/ui
https://docs.flutter.dev/ui
https://www.qt.io/product/framework
https://www.qt.io/product/framework
https://www.jetbrains.com/compose-multiplatform/
https://www.jetbrains.com/compose-multiplatform/

Compose Toolkit
A declarative, multi-platform toolkit.

12

What is Compose?
Compose is a declarative, cross-platform
toolkit.
• It was designed by Google, and released

as JetPack Compose for Android in 2017.
• JetBrains ported Jetpack Compose to

desktop, and released it in 2021
as Compose Multiplatform, which
supports macOS, Windows, Linux, iOS.

• Compose WASM is “on the way”.
In this course we’ll focus on Compose for
Desktop and Android.
This is the rare case where we can use the
same toolkit for more than one platform!

13

https://developer.android.com/jetpack/compose
https://www.jetbrains.com/lp/compose-multiplatform/

What can Compose do?

14

https://github.com/JetBrains/compose-multiplatform/
https://github.com/android/compose-samples

https://github.com/JetBrains/compose-multiplatform/
https://github.com/JetBrains/compose-multiplatform/
https://github.com/JetBrains/compose-multiplatform/
https://github.com/android/compose-samples
https://github.com/android/compose-samples
https://github.com/android/compose-samples

Creating a Compose project?

Desktop:
• IntelliJ > New Project > Compose Multiplatform

Android:
• Android Studio > New Project > Phone and Tablet > (Empty Activity)

15

Composables
The building blocks of any user interface.

16

Concept: Composable Function
• A key concept in Compose is the idea of a composable function (also just

called a composable). This is a small function that describes a part of your
user interface.

• Think of a composable function as a special kind of function that accepts
state and emits a user interface element.

• e.g., this function takes in a String and displays it on-screen by emitting a
Text element that will be displayed.

17

@Composable
fun Greeting(name: String) {

Text("Hello $name!")
}

Characteristics of Composables
The function must be annotated with the @Composable annotation.
• Composable functions are fast, idempotent, and free of side effects!
• Composables do not return a value – they emit output directly into the

scene graph.
• Composable functions will often accept parameters, which are used to

format the composable before displaying it.

18

@Composable
fun Greeting(name: String) {

Text("Hello $name!")
}

https://en.wikipedia.org/wiki/Idempotence

Composable Scope (1/2)

19

Let's display a window.

fun main() = application {
Window(
title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Compose")

}
}

@Composable
fun Greeting(name: String) {
Text("Hello $name!")

}

The application function defines a Composable
Scope – think of it like a wrapper for the scene
graph.

Composable functions must be called from a
Composable Scope, or from other Composables.

These composables describe a scene graph.

composable scope

Composable Scope (2/2)

20

Here’s the resulting window.

fun main() = application {
Window(
title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Compose")

}
}

@Composable
fun Greeting(name: String) {
Text("Hello $name!")

}

The Compose toolkit handles standard
functionality e.g. min/max buttons, titlebar. You

customize the composables by passing in
parameters.

See GitLab repo: /lectures/compose/minimumWindow

https://git.uwaterloo.ca/cs346/lectures/compose

Using Composables
• With compose, you construct user interfaces by combining composables

together to form a scene graph.
• These can be built-in composables, or ones that you create.
• There are many built-in composables:

• Some composables act as containers and manage children composables.
• Other composables display data, and (some) provide interactivity for users.

• Because Compose is cross-platform, most composables work across all
supported platforms.
• e.g. the Text composable exists on both desktop and Android (it hasn’t been

reimplemented - it’s the same code).
• Composable Scope differs by platform e.g. application is desktop specific.
• We’ll continue to demo using Compose Multiplatform/desktop for now.

21

Properties
• Each composable has its own parameters that can be supplied to

affect its appearance and behaviour.
• These are exposed as named parameters.
• Examples:

• Text, textAlign, lineHeight, fontName, fontSize are common with text.
• Color is a property shared by most Composables.
• Style lets you use a particular design attribute that is included in the theme.
• Modifier is a class that contains parameters that are commonly used across

elements. This allows us to set a number of parameters within an instance of
a Modifier.

22

Example: Text

23

A Text composable displays text.

@Composable
fun SimpleText() {
Text(

text = “Widget Demo”,
color = Color.Blue,
fontSize = 30.sp,
style = MaterialTheme.typography.h2,
maxLines = 1

)
}

Example: TextField, OutlinedText

24

A labelled text field

val text = remember { mutableStateOf(”Hello") }

TextField(
value = text.value
label = { Text("Label") }

)

OutlinedTextField(
 value = text.value,
 label = { Text("Label") }
)

Example: Image

25

An Image composable displays an image (by default, image is
loaded from your Resources folder).

@Composable
fun SimpleImage() {

Image(
painter = painterResource("credo.jpg"),
contentDescription = null,
contentScale = ContentScale.Fit,
modifier = Modifier

.height(150.dp)

.fillMaxWidth()

.clip(shape = RoundedCornerShape(10.dp))
)

}

Example: Button

26

There are three main Button composables:
• Button: A standard button with no caption.
• OutlinedButton: A button with an outline. Secondary.
• TextButton: A button with a caption.

fun main() {
application{

Window(onCloseRequest = ::exitApplication, title = "Button Demo")
{

Column(modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally)

{
Button(onClick = { println("Button clicked") }) { Text("Caption") }
OutlinedButton(onClick = { println("OutlinedBn clicked") }) { Text("Caption") }
TextButton(onClick = { println("TextButton clicked") }) { Text("Caption") }

}
}

}
}

https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary

Example: Checkbox

27

A checkbox is a toggleable control that presents a true/false state.
• The OnCheckedChange function is called when the user interacts

with it (and in this case, the state represented by it is being stored
in a MutableState variable named isChecked).

@Composable
fun SimpleCheckbox() {

val isChecked = remember { mutableStateOf(false) }

Checkbox(
checked = isChecked.value ,
enabled = true,
onCheckedChange = { isChecked.value = it }

)
}

Example: Slider

28

A slider lets the user make a selection from a continuous range of
values. It's useful for things like adjusting volume or brightness or
choosing from a range of values.

@Composable
fun SliderMinimalExample() {

var sliderPosition by remember
{ mutableFloatStateOf(0f) }

Column {
Slider(

value = sliderPosition,
onValueChange = { sliderPosition = it }

)
Text(text = sliderPosition.toString())

}
}

Demo

GitLab: /lectures/compose
• Open `Composables.kt` and run the

main method

29

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Layout
How do you control the placement of components?

30

Layout Composables
• Compose includes Layout Composables, whose purpose is to act as a

container to other composables. The three main layouts:
• Column, used to arrange widget elements vertically
• Row, used to arrange widget elements horizontally
• Box, used to arrange objects in layers

• Platforms may also have specific layouts e.g., Scaffold on Android.

31
https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary

Column Composable

32

fun main() = application {
Window(

title = "CS 346 Compose Layout Demo",
onCloseRequest = ::exitApplication

) {
SimpleColumn()

}
}

@Composable
fun SimpleColumn() {

Column(
modifier = Modifier.fillMaxSize(),
verticalArrangement = Arrangement.Center,
horizontalAlignment = Alignment.CenterHorizontally

) {
Text("One")
Text("Two")
Text("Three")

}
}

Row Composable

33

fun main() = application {
Window(

title = "CS 346 Compose Layout Demo",
onCloseRequest = ::exitApplication

) {
SimpleRow()

}
}

@Composable
fun SimpleRow() {

Row(
modifier = Modifier.fillMaxSize(),
horizontalArrangement = Arrangement.SpaceEvenly,
verticalAlignment = Alignment.CenterVertically

) {
Text("One")
Text("Two")
Text("Three")

}
}

Box Composable

34

fun main() = application {
Window(

title = "Custom Theme",
onCloseRequest = ::exitApplication,
state = WindowState(

width = 300.dp, height = 250.dp,
position = WindowPosition(50.dp, 50.dp)

)
){

SimpleBox()
}

}

@Composable
fun SimpleBox() {
Box(Modifier.fillMaxSize().padding(15.dp)) {

Text("Drawn first", modifier = Modifier.align(Alignment.TopCenter))
Text("Drawn second", modifier = Modifier.align(Alignment.CenterStart))
Text("Drawn third", modifier = Modifier.align(Alignment.CenterEnd))
FloatingActionButton(

modifier = Modifier.align(Alignment.BottomEnd),
onClick = {println("+ pressed")}

) {
Text("+")

}
}

}

Nesting Layouts
This example contains a Column as the top-level composable, and a Row at
the bottom that contains Text and Button composables (which is how we
have the layout flowing both top-bottom and left-right).

35

Lazy Layouts
• Columns and rows work fine for a small amount of data that fits on the

screen. What do you do if you have large lists that might be longer or wider
than the space that you have available?
• Ideally, we would like that content to be scrollable. For performance

reasons, we also want large amounts of data to be lazy loaded: only the
data that is being displayed needs to be in-memory and other data is
loaded only when it needs to be displayed.
• Compose has a series of lazy components that work like this:

• LazyColumn
• LazyRow
• LazyVerticalGrid
• LazyHorizontalGrid

36

https://developer.android.com/jetpack/compose/lists

https://developer.android.com/jetpack/compose/lists
https://developer.android.com/jetpack/compose/lists
https://developer.android.com/jetpack/compose/lists

LazyRow Composable

37

fun main() = application {
Window(

title = "LazyColumn",
state = WindowState(width = 500.dp, height = 100.dp),
onCloseRequest = ::exitApplication

) {
LazyRowDemo()

}
}

@Composable
fun LazyRowDemo(modifier: Modifier = Modifier) {

LazyRow(
modifier = modifier.padding(4.dp).fillMaxSize(),
verticalAlignment = Alignment.CenterVertically

) {
items(45) {

Button(
onClick = { },
modifier = Modifier

.size(100.dp, 50.dp)

.padding(4.dp)
) {

Text(it.toString())
}

}
}

}

What is a view? A screen?

A screen is just a top-level composable, typically in its own View file.

@Composable
fun MainView() {

TextRow()
}

@Composable
fun TextRow() {

Row(
 modifier = Modifier.fillMaxSize(),
 horizontalArrangement = Arrangement.SpaceEvenly,
 verticalAlignment = Alignment.CenterVertically
) {

Text("One")
Text("Two")
Text("Three")

 }
}

38

Navigation
How to transition between screens?

39

Why is navigation important?

• Complex applications will need multiple screens.
• The typical paradigm is navigating forward and backwards through a

series of screens e.g., web browser, mobile applications.
• We need programmatic support for:

• Switching to a new screen (and potentially passing data between them).
• Keeping track of the user’s navigation history, so that we can go

forward/backward through screens.
• Deep-linking so that we can “jump” to a particular place in the navigation list.
• Animations and transitions between screens.

40

Option 1: Simple navigation

What if you just want to switch between two screens?
• Easy solution: composable functions for each screen, and you just

choose which one to load based on application state.
• Involves `state-hoisting`.

41

42

fun main() = application {
 Window(
 title = "Simple Navigation",
) {
 var screen by remember { mutableStateOf<Screen>(Screen.SCREEN_A) }
 when(screen) {
 Screen.SCREEN_A -> ScreenA({ screen = Screen.SCREEN_B })
 Screen.SCREEN_B -> ScreenB({ screen = Screen.SCREEN_A })
 }
 }
}

@Composable
fun ScreenA(clickHandler: () -> Unit) {
 Column {
 Text("Screen A")
 Button(onClick = { clickHandler() }) { Text("Go to Screen B") }
 }
}

@Composable
fun ScreenB(clickHandler: () -> Unit) {
 Column {
 Text("Screen B")
 Button(onClick = { clickHandler() }) { Text("Go to Screen A") }
 }
}

// track the current screen

// recompose on screen change
// pass in button press code

// button invokes lambda

See: GitLab > samples > compose > navigation

Option 2: Complex Navigation

• When just moving between screens isn’t sufficient.
• You want an external component to ”decide” which screens to load.

• e.g., navigation bar that chooses what is displayed based on conditions.

• You need to pass complex data between screens.
• e.g., moving from a summary to detail view (list of customers, to one record).

• We have Navigation libraries to help with this:
• Jetpack Navigation for Android
• Compose Navigation for Desktop
• Voyager multiplatform for Compose (3rd party)

43

We will revisit
in the Platform

lectures.

https://developer.android.com/guide/navigation/principles
https://developer.android.com/guide/navigation/principles
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-navigation.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-navigation.html
https://github.com/adrielcafe/voyager
https://github.com/adrielcafe/voyager

Voyager Navigation
Voyager – works on Android, iOS, desktop. It’s simpler to setup and use.

class HomeScreen : Screen {

 @Composable
 override fun Content() {
 val screenModel = rememberScreenModel ()
 // ...
 }
}

class SingleActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContent {
 Navigator(HomeScreen())
 }
 }
}

Voyager makes simple
navigation between screens
very easy.

If you don’t need a more
complicated navigation model
i.e., deep-linking, then it may
be a better choice.

It’s also multiplatform so it
should work anywhere you can
compile a Kotlin application.

https://github.com/adrielcafe/voyager

Interactivity & State
How to manage state in your views.

45

Adding Interactivity (1/4)

46

Let’s revisit our Window demo and add an interactive Button.

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(caption: String) {

Button(onClick = { println("Button pressed") }) {
Text(caption)

}
}

Console Output
> Task :run
Button pressed
Button pressed
Button pressed

onCloseRequest and onClick are
event handlers; we’re assigning

functions to be called when
those events occur.

samples/compose > state/HelloState.kt

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Adding Interactivity (2/4)

47

Let’s have it try and update the Button caption, i.e. emitted UI.

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(caption: String) { // caption is a val

var localCaption = caption
Button(onClick = { localCaption = "Pressed" }) {

Text(localCaption)
}

}

It doesn’t work. The UI never
updates. Why?

samples/compose > state/HelloState.kt

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Concept: Recomposition
The declarative design of Compose means that it draws the screen once
when the application launches, and then only redraws elements when their
state changes.
Compose is effectively doing this:

• Drawing the initial user interface.
• Monitoring your state (aka variables) directly.
• When a change is detected in state, the portion of the UI that relies on that state is

updated.

Compose redraws affected components by calling their Composable
functions. This process (detecting a change and then redrawing the UI) is
called recomposition and is the main design principle behind Compose.

48

Adding Interactivity (2/4) - revisited

49

Let’s look at the example again:

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(caption: String) { // caption is a val

var localCaption = caption
Button(onClick = { localCaption = "Pressed" }) {

Text(localCaption)
}

}

samples/compose > state/HelloState.kt

Why didn’t this work?
The onClick handler attempted to change
the text property of the Button.

This triggered Compose to call the Window
composable, which called the Button
composable, which initialized text to its initial
value...

https://git.uwaterloo.ca/cs346/public/-/tree/main/samples/desktop/compose-demo?ref_type=heads

Adding Interactivity (3/4)

50

We need the `remember` keyword to help remember state!

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(caption: String) {
 var localCaption = remember { mutableStateOf(caption) }

Button(onClick = {localCaption.value = "Pressed"}){
Text(localCaption.value)

}
}

This works.

remember tells Compose to not
reinitialize this variable (so we
don’t lose state on
recomposition).

Adding Interactivity (4/4)

51

To make state observable, use a MutableState class.

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication

) {
Greeting("Unpressed")

}
}

@Composable
fun Greeting(caption: String) {
 var localCaption by remember { mutableStateOf(caption) }

Button(onClick = {localCaption = "Pressed" }) {
Text(Hello ${localCaption})

}
}

Using the `by` keyword with
remember uses delegation. We
delegate get calls to the state’s value
property.

Remembering State

52

There are multiple classes to handle different types of State. Here's a partial list:

Window(
title = "Hello Window",
onCloseRequest = ::exitApplication

) {
val caption by remember { mutableStateOf("Press me") }
Button(onClick = {caption = "Pressed!"}) {

Text(caption)
}

}

State Hoisting (1/2)

• A composable that uses remember is storing the internal state within
that composable, making it stateful (e.g. our Greeting composable
function above).
• However, storing state in a function can make it difficult to test and

reuse. It's sometimes helpful to pull state out of a function into a
higher-level, calling function. This process is called state hoisting.

53

State Hoisting (2/2)

54

fun main() = application {
Window(title = "Window", onCloseRequest = ::exitApplication) {

HelloScreen()
}

}

@Composable
fun HelloScreen() {

var name by remember { mutableStateOf(”Jeff") }
HelloContent(name = name, onNameChange = { name = it })

}

@Composable
fun HelloContent(name: String, onNameChange: (String) -> Unit) {

Column(modifier = Modifier.padding(16.dp)) {
Text(text = "Hello, $name")
OutlinedTextField(value = name,

onValueChange = onNameChange, label = { Text("Name") })
}

}

Our state is the name that the user is
entering in the OutlinedTextField.

Instead of storing that in our
HelloContent composable, we keep
our state variable in the calling
class HelloScreen and pass in the
callback function that will set that
value.

Themes
How to customize it?

55

Material 3 Theme
• A theme is a common look-and-feel

that is used when building software.
• Google includes their Material Design

theme in Compose, and by default,
composables will be drawn using the
Material look-and-feel. This includes
colors, opacity, shadowing and other
visual elements.
• https://m3.material.io/
• This is fantastic as an Android

developer: it’s very well specified and
complete. It also may not be what you
want on desktop, or iOS.

56

https://m3.material.io/
https://m3.material.io/
https://m3.material.io/
https://m3.material.io/

57https://m3.material.io

https://m3.material.io/

58

https://developer.android.com/codelabs/jetpack-compose-theming#0

https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming
https://developer.android.com/codelabs/jetpack-compose-theming

To customize the default theme, we can just extend it and change its properties and then set our
application to use the modified theme.

@Composable
fun CustomTheme(

content: @Composable () -> Unit
) {

MaterialTheme(
colors = MaterialTheme.colors.copy(primary = Color.Red, secondary = Color.Magenta),
shapes = MaterialTheme.shapes.copy(

small = AbsoluteCutCornerShape(0.dp),
medium = AbsoluteCutCornerShape(0.dp),
large = AbsoluteCutCornerShape(0.dp)

)
) { content() }

}

fun main() = application {
Window(

title = "Hello Window",
onCloseRequest = ::exitApplication,
state = WindowState(width=300.dp, height=250.dp, position = WindowPosition(50.dp, 50.dp))

) {
CustomTheme { … }

59

Reference

• Google. 2024. Jetpack Compose Documentation.
• Google. 2024. Thinking in Compose.
• JetBrains. 2024. Compose Multiplatform Documentation.
• Phillip Lackner. 2024. The Compose Multiplatform Crash Course

60

https://developer.android.com/jetpack/compose
https://developer.android.com/develop/ui/compose/mental-model
https://www.jetbrains.com/lp/compose-multiplatform
https://www.youtube.com/watch?v=WT9-4DXUqsM

