
Building
Desktop Applications

CS 346 Application
Development

1

Desktop == “WIMP” interfaces
• Paradigm designed at Xerox PARC in 1973.

• See also desktop metaphor in computing.

• Popularized with Apple Macintosh in 1984.
• Windows, Icons, Menus, Pointer

• Each program runs in a self-contained and
isolated Window.

• Icons represent actions e.g., printer, trash can.
• Menus represent commands that can be issued

by the user.
• Pointer refers to the mouse-pointer.

• Advantages: Discoverable, Simple, Familiar.
• Disadvantages: Resources, Accessibility.

Macintosh user interface from 1984.

2

https://en.wikipedia.org/wiki/Desktop_metaphor

Desktop-Specific Features

1. Graphical user interfaces (GUI)
• Windows as a logical abstraction; overlapping, min/max
• Reusable ”widgets” that we associate with desktop applications.

2. Keyboard + mouse interaction
• Keyboard shortcuts e.g., CMD-H to hide a window.
• Menus e.g., File, Edit, View, Window.
• Features: undo/redo, copy/paste, drag/drop.

All of these are provided by Compose Multiplatform.

3

https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform.html

Getting started
How to create a desktop project.

4

Update the version catalog in a standard Gradle project:

libs.versions.toml
[versions]
kotlin-ver = "2.0.20"
compose-plugin = "1.6.11"

[plugins]
jetbrains-compose = { id = "org.jetbrains.compose", version.ref = "compose-plugin" }
compose-compiler = { id = "org.jetbrains.kotlin.plugin.compose", version.ref = "kotlin-ver” }

Step 1: Check dependencies

Use the most
recent version of

each dependency.

5

Update the build.gradle.kts to include them:

build.gradle.kts
plugins {
 alias(libs.plugins.kotlin.jvm)
 alias(libs.plugins.jetbrains.compose)
 alias(libs.plugins.compose.compiler)
}

dependencies {
 implementation (compose.desktop.currentOs)
}

compose.desktop {
 application {
 mainClass = “MainKt"
 }
}

Step 2: Add dependencies

6

Changes to Gradle?
Use the Gradle menu (View > Tool Windows > Gradle).

7

Builds for your computer:
• MSI for Windows
• DMG for macOS
• DEB for Linux

Desktop Composables
Components specific to desktop applications.

8

Window

• A window is the top-level of our scene-graph.
• We can have multiple windows.
• Most applications require at least one window.
• You programmatically manage windows and their contents.

• “Regular” window behavior is handled by the OS/toolkit.
• e.g., resizing, dragging, minimize, maximize.

• Parameters
• Title - Window title
• onCloseRequest - lambda or function name to call on close
• State - WindowState, including dimensions, position
• contents - Window contents (also pass as trailing lambda)

9

fun main() {
 application {
 MaterialTheme {
 Window(
 title = "Window 1",
 onCloseRequest = ::exitApplication
) {
 Text("This is a window") // contents are a trailing lambda
 }

 Window(
 title = "Window 2",
 onCloseRequest = ::exitApplication
) {
 Text("This is also a window")
 }
 }
 }
}

samples/desktop/desktop-compose -> run MultipleWindows main method

Window
Independent, each has its

own scene-graph.

10

fun main() {
 application {
 MaterialTheme {

 Window(
 title = "WindowState",
 state = WindowState(// state obj manages size and position
 position = WindowPosition(Alignment.center),
 size = DpSize(300.dp, 200.dp)
),
 onCloseRequest = ::exitApplication
) {
 Text("This is a window")
 }
 }

 }
}

samples/desktop/desktop-compose -> run WindowState main method

(WindowState)
Controls position, size.

11

Window(
 title = "Main Window",
 onCloseRequest = ::exitApplication,
 state = WindowState(position = WindowPosition(Alignment.Center))
) {

 var isDialogOpen by remember { mutableStateOf(false) }
 Button(onClick = { isDialogOpen = true }) { // button sets a flag to show dialog
 Text(text = "Open dialog")
 }

 if (isDialogOpen) { // flag determines if this gets show
 DialogWindow(
 title = "Dialog Window",
 onCloseRequest = { isDialogOpen = false },
 state = rememberDialogState(position = WindowPosition(Alignment.Center))
) {
 Text("Dialog text goes here")
 }
 }
}

samples/desktop/desktop-compose -> run Dialogs main method

Dialog Box
Foreground modal window

12

fun main() = application {
Window(onCloseRequest = ::exitApplication) {

App(this@Window, this@application)
}

}

@Composable
fun App(

windowScope: FrameWindowScope,
appScope: ApplicationScope

) {
windowScope.MenuBar {

Menu("File", mnemonic = 'F') {
val nextWindowState = rememberWindowState()
Item(

"Exit",
onClick = { appScope.exitApplication() },
shortcut = KeyShortcut(

Key.X,
ctrl = false)

)
}

}
}

System Menu
OS determines position

samples/desktop/desktop-compose -> run SystemMenus main method
13

val trayState = rememberTrayState()
val notification = rememberNotification(
 "Notification", "Message from MyApp!”
)

Tray(
 state = trayState,
 icon = TrayIcon,
 menu = {
 Item("Increment value", onClick = { count++})
 Item("Send notification", onClick = {
 trayState.sendNotification(notification)
 })
 Item("Exit", onClick = { isOpen = false })
)

System Tray
Taskbar or system tray icon

samples/desktop/desktop-compose -> run SystemTray main method
14

Interaction
Handling mouse and keyboard input on desktop.

16

Keyboard Input
fun main() = application {

Window(
title = "Key Events",
state = WindowState(width = 500.dp, height = 100.dp),
onCloseRequest = ::exitApplication,
onKeyEvent = {

if (it.type == KeyEventType.KeyUp) {
println(it.key)

}
}

){
val text = remember { mutableStateOf("") }
val textField = TextField(

value = text.value,
onValueChange = { text.value = it }

)
}

}

Window-level
event handler

Widget-level
event handler

samples/desktop/desktop-compose -> run Interaction main method
17

Mouse Clicks
Box(

modifier = Modifier
.background(Color.Magenta)
.fillMaxWidth(0.9f)
.fillMaxHeight(0.2f)
.combinedClickable(

onClick = { text = "Click! ${count++}” },
onDoubleClick = { text = "Double click! ${count++}” },
onLongClick = { text = "Long click! ${count++}” }

)
)

Multi-event handler
necessary to handle
all mouse inputs.

samples/desktop/desktop-compose -> run Interaction main method
18

Mouse Movement
var color by remember { mutableStateOf(Color(0, 0, 0)) }

Box(
modifier = Modifier

.background(Color.Magenta)

.fillMaxWidth(0.9f)

.fillMaxHeight(0.2f)

.onPointerEvent(PointerEventType.Move) {
val position = it.changes.first().position
color = Color(

position.x.toInt() % 256,
position.y.toInt() % 256, 0

)
}

)

Drag handler. `it`
contains a list of
mouse movements.

lectures/desktop -> run Interaction main methods
19

Reference

• Bolt UIX. 2025. KMP: What You Can Only Do in desktopMain
• JetBrains. 2025. Compose Multiplatform Documentation.
• JetBrains. 2025. Kotlin Multiplatform Documentation.

20

https://www.boltuix.com/2025/07/kotlin-multiplatform-what-can-only-be.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/get-started.html

