Building
Desktop Applications

CS 346 Application
Development

Deskto

e Paradigm designed at Xerox PARC in 1973.
* See also desktop metaphor in computing.

* Popularized with Apple Macintosh in 1984.

* Windows, Icons, Menus, Pointer

e Each program runs in a self-contained and
isolated Window.

* Icons represent actions e.g., printer, trash can.

* Menus represent commands that can be issued
by the user.

* Pointer refers to the mouse-pointer.

* Advantages: Discoverable, Simple, Familiar.
* Disadvantages: Resources, Accessibility.

“WIMP” interfaces

AlAC

SN n ISR V] e

o [0 [[[y

Un{

Adobe Ph
0 dnage
< dnrasniy
0O Word

Save this doq

fmiga FE7H M
Campuserup BiF
EPS

My Paint

PICT File

PICT Resource
PIHAR
Pigaifaint

Raw

Seitan OY

TGA
Thundarsoan

File Format: «TIFF

Macintosh user interface from 1984.

Untitled

Eject
esktop

Save I

LCancel

https://en.wikipedia.org/wiki/Desktop_metaphor

Desktop-Specific Features

1. Graphical user interfaces (GUI)
* Windows as a logical abstraction; overlapping, min/max
* Reusable "widgets” that we associate with desktop applications.

2. Keyboard + mouse interaction

» Keyboard shortcuts e.g., CMD-H to hide a window.
* Menus e.g., File, Edit, View, Window.

* Features: undo/redo, copy/paste, drag/drop.

All of these are provided by Compose Multiplatform.

https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform.html

Getting started

How to create a desktop project.

Step 1: Check dependencies

Update the version catalog in a standard Gradle project:

libs.versions.toml

[versions]
kotlin-ver = "2.0.20"
compose-plugin = "1.6.11"

[plugins]
jetbrains-compose = { id = "org.jetbrains.compose", version.ref = "compose-plugin" }
compose-compiler = { id = "org.jetbrains.kotlin.plugin.compose", version.ref = "kotlin-ver” }

Step 2: Add dependencies

Update the build.gradle.kts to include them:

build.gradle.kts

plugins {
alias(libs.plugins.kotlin.jvm)
alias(libs.plugins.jetbrains.compose)
alias(libs.plugins.compose.compiler)

hy

dependencies {
implementation (compose.desktop.current0s)
}

compose.desktop {
application {
mainClass = “MainKt"
}

Changes to Gradle?

Use the Gradle menu (View>Tool Windows >Gradle).

Command What does it do?

Tasks > build > clean Removes temp files (deletes the /build directory)
Tasks > build > build Compiles your application

Tasks > compose desktop > run Executes your application (builds it first if necessary)

Tasks > compose desktop > package Create an installer for your platform!

ece B scrateh-pad Builds for your computer:
— K e MSI for Windows
/A;pncations scratch-pad.app e DMG for macOS

e DEB for Linux

Desktop Composables

Components specific to desktop applications.

Window

* A window is the top-level of our scene-graph.
* We can have multiple windows.
* Most applications require at least one window.
* You programmatically manage windows and their contents.

» “Regular” window behavior is handled by the OS/toolkit.
* e.g., resizing, dragging, minimize, maximize.

e Parameters

- Title - Window title
- onCloseRequest - lambda or function name to call on close
- State - WindowsState, including dimensions, position

- contents - Window contents (also pass as trailing lambda)

Window

fun main() o Independent, each has its

application {

MaterialTheme { own scene-graph.
Window(
title = "Window 1",
onCloseRequest = ::exitApplication
) {
Text("This is a window") // contents are a trailing lambda
}
Window(
title = "Window 2",
onCloseRequest = ::exitApplication
) {
Text("This is also a window")
}

samples/desktop/desktop-compose -> run MultipleWindows main method
10

(WindowsState)

fun main L .
O A Controls position, size.

application 1
MaterialTheme {

Window(
title = "WindowState",
state = WindowState(// state obj manages size and position

position = WindowPosition(Alignment.center),
size = DpSize(300.dp, 200.dp)

),

onCloseRequest = ::exitApplication

)

Text("This is a window")
}.

samples/desktop/desktop-compose -> run WindowState main method
11

Window(Dialog Box

title = "Main Window", Foreground modal window
onCloseRequest = ::exitApplication,
state = WindowState(position = WindowPosition(Alignment.Center))

) {

var isDialogOpen by remember { mutableStateOf(false) }

Button(onClick = { isDialogOpen = true }) { // button sets a flag to show dialog
Text(text = "Open dialog")
}

if (isDialogOpen) { // flag determines if this gets show
DialogWindow(
title = "Dialog Window",
onCloseRequest = { isDialogOpen = false },
state = rememberDialogState(position = WindowPosition(Alignment.Center))

) {
Text("Dialog text goes here")
}

samples/desktop/desktop-compose -> run Dialogs main method
12

fun main() = application { System Mgnu
Window(onCloseRequest = ::exitApplication) { OS determines position
App (this@Window, this@application)

}.

@Composable

fun App(
windowScope: FrameWindowScope,
appScope: ApplicationScope

& SystemMenusKt File
O [] Untitled Exjt

windowScope.MenuBar {

Menu("File", mnemonic = 'F') {
val nextWindowState = rememberWindowState()
Item(
"EXit",

onClick = { appScope.exitApplication() },
shortcut = KeyShortcut(

Key.X,

ctrl = false)

} samples/desktop/desktop-compose -> run SystemMenus main method
13

val trayState = rememberTrayState() System Tray
val notification = rememberNotification(Taskbar or system tray icon
"Notification", "Message from MyApp!”

)
Tray(
state = trayState, e C
icon = TrayIcon, Q = 30°C ,
menu = {
Item("Increment value", onClick = { count++}) Increment value
Item("Send notification", onClick = { e and notificat
trayState.sendNotification(notification) SICEROTITICatON
}) . _ _ Exit
Item("Exit", onClick = { isOpen = false })
)

samples/desktop/desktop-compose -> run SystemTray main method
14

Interaction

Handling mouse and keyboard input on desktop.

16

Keyboard Input

fun main() = application {

Window(
title = "Key Events",
state = WindowState(width = 500.dp, height
onCloseRequest = ::exitApplication,

onKeyEvent = {
if (it.type == KeyEventType.KeyUp) {
println(it.key)
}

}
){
val text = remember { mutableStateOf("") }
val textField = TextField(
value = text.value,

onValueChange = { text.value = it }

samples/desktop/desktop-compose -> run Interaction main method

100.dp),

Window-level
event handler

Widget-level
event handler

17

Mouse Clicks

Box (
modifier = Modifier
.background(Color.Magenta)
.FillMaxWidth(0.9f)
.fillMaxHeight(0.2f)

.combinedClickable(
onClick = { text = "Click! ${count++}” }, Multi-event handler
onDoubleClick = { text = "Double click! ${count++}” }, necessary to handle
onLongClick = { text = "Long click! ${count++}” } all mouse inputs.

)

samples/desktop/desktop-compose -> run Interaction main method
18

Mouse Movement

var color by remember { mutableStateOf(Color(0, 0, 0)) }

Box (
modifier = Modifier
.background(Color.Magenta)
.FillMaxWidth(0.9f)
.fillMaxHeight(0.2f)
.onPointerEvent(PointerEventType.Move) {
val position = it.changes.first().position
color = Color(
position.x.toInt() % 256,
position.y.toInt() % 256, 0O

) lectures/desktop -> run Interaction main methods

p—

Drag handler. ‘it
contains a list of
mouse movements.

19

Reference

e Bolt UIX. 2025. KMP: What You Can Only Do in desktopMain
e JetBrains. 2025. Compose Multiplatform Documentation.
e JetBrains. 2025. Kotlin Multiplatform Documentation.

20

https://www.boltuix.com/2025/07/kotlin-multiplatform-what-can-only-be.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/get-started.html

