Building
Mobile Applications

CS 346 Application
Development

Smartphone Design

 Smartphones as personal, portable computing.

 Originally a mashup of other devices.
* “An iPod, a phone, an internet communicator”.
* Mobile phone category evolved over 2-3 years.

 What makes them unique?
* Touch-screens! Touch input, customizable output.
* Optimized for simple, ad hoc interaction.
* Asingle device for all your needs (data).
of that year. Apple sold more than 6

* DeSign concerns million phones before replacing this
* Processing efficiency, battery life. model with the iPhone 3G in 2008.
» Security! Applications needed to be sandboxed.

The first iPhone, introduced in Jan
2007, and available for sale in June

Android

 History of Android
* Founded by Andy Rubin 2003 to build a camera OS.
* Pivoted to phone OS 2004, sold to Google in 2005.

* By Dec 2006 Google was testing phones w.
keyboards.

* Redesigned for touch-screens before phones
launched.
e Android is the world’s “most popular OS”.
* Based on Linux kernel; portions are open source.
* Ships on different devices e.g., TV boxes, phones.
* “Billions of Android devices” have been shipped.

The first Android phone was the
HTC Dream, which launched in
October 2008 — approximately 18
months after the first iPhone.

Android Features

* Graphical User Interface
* Applications presented as pages of icons.

* An application usually runs full-screen.
* Forward/backward screen navigation within an application.
* Navigate through running applications.

e Custom Ul displays
* Side-by-side applications, Live-regions
* Tight integration with Google applications
* Gmail, Google docs, other services.
* Google search, “Ok Google” voice chat.

* Wider range of hardware
* Many vendors, who produce a wider range of devices.

N =-.af 46% @ 2:33 PM

@0 r+r@6

Game Clock T-Mobile Smart- My Files
Launcher Things

M & @ @

Calculator Email Settings Calendar Gallery:

Say "Ok Google"

OB o @ ©

Phone Messages Internet Play Store ~ Camera

= o -

Getting Started

How to create an Android project.

Step 1: Create a Project

An Android project is just a
Gradle project with specific S
dependencies.
* Requires an IDE with the
Android plugin installed.
* IntelliJ IDEA or Android
Studio are both fine. e

Step 2: Check the directory structure

Project -

L sniridcommose fandrodnavioaton kil An Android project should be runnable

e after you walk through the creation wizard.
v Osrc
[Z androidTest
e Same general structure as any other
TR aterion Gradle project.
g * Some additional configuration files.
[AndroidManifest.xml
o test unitTest] * Some changes when we run and test
= e code.
= proguard-rules.pro . B
Sgrade ’ e TBDin a few slides.
@ .gitignore
&2 build.gradle.kts
{3} gradle.properties
] gradlew
= gradlew.bat
icon.png
3 local.properties
README.md

&2 settings.gradle.kts
> [Ih External Libraries

Step 3: Dependencies

[versions]

agp "8.10.1" ° 1

oo I ot o You will have a large
T number of starting

junit 4.13.2 |

junitVersion "1.2.1" 1

espressoCore = "3.6.1" dependenCIeS.
lifecycleRuntimeKtx "2.8.7"

activityCompose = "1.9.3" b Add more as needed
composeBom "2024.10.01" .
composeNavigation = "2.8.3" through the version catalog.
serialization "1.7.2"

[libraries]

androidx-core-ktx { group "androidx.core", name "core-ktx", version.ref "coreKtx" }

junit = { group = "junit", name = "junit", version.ref = "junit" }

androidx-junit { group "androidx.test.ext", name "junit", version.ref "junitVersion" }

androidx-espresso-core { group "androidx.test.espresso", name "espresso-core", version.ref "espressoCore" }
androidx-lifecycle-runtime-ktx { group "androidx.lifecycle", name "lifecycle-runtime-ktx", version.ref
"lifecycleRuntimeKtx" }

androidx-activity-compose { group "androidx.activity", name "activity-compose", version.ref "activityCompose" }
androidx-compose-bom { group "androidx.compose", name "compose-bom", version.ref "composeBom" }

androidx-ui { group "androidx.compose.ui", name "ui" }

androidx-ui-graphics { group "androidx.compose.ui", name "ui-graphics" }

androidx-ui-tooling { group "androidx.compose.ui", name "yi-tooling" }

androidx-ui-tooling-preview = { group "androidx.compose.ui", name "yi-tooling-preview" }

androidx-ui-test-manifest { group "androidx.compose.ui", name "yi-test-manifest" }

androidx-ui-test-junit4 { group "androidx.compose.ui", name "yi-test-junits" }

androidx-material3 { group "androidx.compose.material3", name "material3" } 9
navigation-compose { module "androidx.navigation:navigation-compose", version.ref "composeNavigation" }

kntliny-cqerializatinn--diann { madile "ara dethraine kntlinx:kntlinx-cerializatinn-dicnn" vercinn ref "eprializatinn"}t

Running on a virtua

Select Hardware

| device

Virtual Device Configuration

DEMO!

Choose a device definition

Q-
Category Name v Play Store
Phone Resizable (Experimental)
Tablet Pixel XL
Wear 0S Pixel 7 Pro
Desktop Pixel 7 3
v Pixel 6a
Automoti... Pixel 6 Pro
Pixel 6
Pixel 5
New Hardware Profile Import Hardware Profiles
?

Size

6.0"

55

6.71"

6.31"

6.13"

6.7"

6.4"

6.0"

Resolution

1080x2...

1440x2...

1440x3...

1080x2...

1080x2...

1440x3...

1080x2...

1080x2...

Density

420dpi
560dpi
560dpi
420dpi
420dpi
560dpi
420dpi

440dpi

12

g Pixel2
1080px
Size: large
Ratio: long
Density: 420dpi
1920px
Clone Device...
Cancel ioL Finish

Tools > Android > Android Device Manager

10

Architecture

How is Android designed?

Application Design

A typical Android application contains multiple components, including
some combination of:

Activities Screens, each with its own state and lifecycle.
Fragments Portions of a screen that can be managed separately.
Services Provides long-running operations in the background.
Content Providers Shares data with other applications.

Broadcast Receivers Listens for system events e.g., phone call, airplane mode.

These components are registered with the OS, and applications can request to use each
other’s components e.g., you can use an existing ‘camera’ component instead of creating one.

12

onCreate()

R

onStart() 4—‘ onRestart()

—

User navigates onResume()

to the activity

-

Another activity comes
into the foreground

User returns
+ to the activity

— onPause() —
S—
The activity is

no longer visible)
* User navigates

to the activity
onstop() J

R —
The activity is finishing or
being destroyed by the system

v

onDestroy()

Apps with hlgher priority
need memory

Key takeaway: your
application needs to support
being paused or stopped
(typically by saving data for
later).

13

Activity Lifecycle

There are three key loops that these phases attempt to capture:

* The entire lifetime of an activity happens between the first call to
onCreate(Bundle) through to a single final call to onDestroy(). Setup is
done in onCreate(), and resources are released by onDestroy().

* The visible lifetime of an activity happens between a call to onStart()
until a corresponding call to onStop (). During this time the user can see
the activity on-screen, though it may not be in the foreground.

* The foreground lifetime of an activity happens between a call to

onResume () until a corresponding call to onPause (). During this time the

activity is in visible, active and interacting with the user. An activity can
frequently go between the resumed and paused states e.g. sleeping.

Warning: Data loss on rotation

 Activities can be restarted when
* The OS decides that it needs to reclaim resources (uncommon),
* You rotate the device (common!)

» Restarting activities means relaunching and losing data.

* How do you avoid this?
* Save and restore data manually

* QOverride the onPause() and onResume() methods and manage a Bundle of data.

* Use a ViewModel as a base class for your custom ViewModel.
* Android will automatically save and restore VM data!!
* https://developer.android.com/topic/libraries/architecture/viewmodel

15

https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/topic/libraries/architecture/viewmodel

Application Structure

What does it look like again?

v [(3app

. v [Dsre
Project Structure Ep—
v (3 main
v [Djava
. . v [Dca
Your application structure should look the same v &) uwaterloo
as discussed in the Architecture lecture, with o
data/, domain/ and presentation/ layers. @ D20
@ IDb
(@ TaskDao
. . . [X TaskDb.kt
Differences compared to a desktop application: « & domain
. [< TaskEntity.
* Your entry point is the MainActivity class. @TaskMO:ZIkt
. . . . v (2] presentation
- Manifest file describes your project structure. S
* Android stores resources in the res folder A
structure. There is an APl to load them. @ MainActivity
> [(2res

AndroidManifest.xml
> [Qtest [unitTest]
17

MainActivity

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?)
super.onCreate(savedInstanceState)
enableEdgeToEdge()

val database= getRoomDatabase(this)
val taskModel = TaskModel(database.taskDao())
val viewModel TaskViewModel(taskModel)

setContent {
MMTheme {

MainActivity.kt

MainActivity is a class that
extends ComponentActivity.

Activities have built-in methods
that mirror their lifecycle:
onCreate(), onStart(), onStop()
and so on.

The onCreate() method is the
first method that is called when
the MainActivity is instantiated

and serves as the entry point for
your application.

TaskView(viewModel) // top-level View/Composable

L GitHub: demos > mm-android

18

Application Manifest

Every Android project has a single "AndroidManifest.xml" file
This is an XML file that describes your application structure.

* It lists components and properties required to compile, install and run
your application. e.g.,
* |dentifies the "MainActivity” which launches on startup i.e., ‘'main" method.
* Identifies the name and icon to use for your application.
* Location of resources to include.

* Permissions that the application requires You can probably

ignore this file UNLESS
you need permissions

* See Application Manifest Overview (file system, network)

https://developer.android.com/guide/topics/manifest/manifest-intro

<?xml version="1.0" encoding="utf-8"?> AndroidManifest.xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools">

<application
android:allowBackup="true"
android:dataExtractionRules="@xml/data_extraction_rules"
android:fullBackupContent="@xml/backup_rules"
android:icon="(@mipmap/ic_launcher"
android:label="(@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/Theme.Mmandroid"
tools:targetApi="31">
<activity
android:name="ca.uwaterloo.mm.MainActivity"
android:exported="true"
android:label="(@string/app_name"
android:theme="(@style/Theme.Mmandroid">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

GitHub: demos > mm-android 20

Activity: View relationship

We use View classes for screens. How do they relate to Activities?

1. Each View is an Activity (early-Android).
* Every screen is represented by a corresponding Activity.
* You would use an Intent (message to the OS) to swap between them.
* This is not recommended! It’s very slow.

2. You fewer Activities, each is configurable using Fragments (old Android)
* You have few Activities, but each one is composed of pieces called Fragments.
* You write logic to load the Activity, then load suitable fragments.
* Not recommended! Faster, but still generally very slow.

3. One Activity, and you just choose your View to show (new Android)
* Use your MainActivity as a container. Each view is a single top-level composable!
* Navigation code/libraries just chooses which View to launch. v

https://developer.android.com/reference/android/content/Intent

@Composable
fun TaskView(viewModel: TaskViewModel) {
val items by viewModel.getAll().collectAsState(initial = emptyList())

Scaffold(
topBar = {
Toolbar(
addHandler = { viewModel.showAddDialog = true },
editHandler = { viewModel.showEditDialog = true },
deleteHandler = {
val task = viewModel.selectedTask ?: return@Toolbar
viewModel.delete(task)
viewModel.selectedTask = null
}
)
},

bottomBar = { },
) { padding —
Box (

modifier = Modifier.fillMaxSize().padding(padding)
) {

presentation/
TaskView.kt

The presentation layer
communicates with the
domain layer. i.e.
TaskViewModel and
TaskEntity classes.

None of this is Android-
specific; it’s straight
Compose code.

if (items.isEmpty() && !viewModel.showAddDialog && !viewModel.showEditDialog) {

Text(
"No tasks available. Add a task using the + button.",

modifier = Modifier.align(Alignment.Center).padding(16.dp)

)
} else {

/] .
} GitHub: demos > mm-android

22

/*

* Android ViewModel

* This class holds state for our Application Composable function.

* The built-in ViewModel survives screen rotation automatically.

*x/

class TaskViewModel(val taskModel: TaskModel) : ViewModel() {
var selectedTask by mutableStateOf<Task?>(null)
var showAddDialog by mutableStateOf(false)
var showEditDialog by mutableStateOf(false)

fun getAll(): Flow<List<Task>> {
return taskModel.getAll()
}

fun getById(id: Int): Task {
return runBlocking {
taskModel.getById(id)
}

hy

fun deleteAll() {
viewModelScope.launch {
taskModel.deleteAll()
}

/]

GitHub: demos > mm-android

domain/
TaskViewModel.kt

The domain layer
communicates with the
data layer.

None of this code is
Android specific.

We'll review the

application in more detail
in the database lecture.

23

Android Composables

What Compose functionality is specific to mobile development?

nnnnnnnnnnn

ooooooooooo

Composable: Scaffold

@Composable

fun ScaffoldDemo() {
val materialBlue700= Color(OxFF1976D2)
val scaffoldState = rememberScaffoldState(rememberDrawerState(DrawerValue.0pen))

Scaffold(
scaffoldState = scaffoldState,
topBar = {

TopAppBar(title = {Text(“TopAppBar")}, backgroundColor = materialBlue700)
floatingActionButtonPosition = FabPosition.End,
floatingActionButton = { FloatingActionButton(onClick = {}){Text(“X™)} },
drawerContent = { Text(text = "drawerContent") },
content = { Text("BodyContent") },
bottomBar = {

BottomAppBar(backgroundColor = materialBlue700) {Text(“BottomAppBar”)}
}.

25

Composable: Image

@Composable

fun ImageResourceDemo() {
val image: Painter = painterResource(id = R.drawable.composelogo)
Image(painter = image,contentDescription = "")

26

Composable: Floating Action Buttons

@Composable

fun FloatingActionButtonDemo() {
FloatingActionButton(onClick = { /*do somethingx/}) {

Text("FloatingActionButton")
IS

@Composable

fun ExtendedFloatingActionButtonDemo() {
ExtendedFloatingActionButton(—
icon = { Icon(Icons.Filled.Favorite,"") },
text = { Text("FloatingActionButton") },

onClick = { /*do something*/ },
elevation = FloatingActionButtonDefaults.elevation(8.dp)

Composable: Card

@Composable
fun CardDemo() {
Card(
modifier = Modifier.fillMaxWidth().padding(15.dp).clickable{ },
elevation = 10.dp
) {
Column(modifier = Modifier.padding(15.dp)) {
Text("Jetpack Compose Playground")
Text("Now you are in the Card section")

welcome to Jetpack Compose Playground
Now you are in the Card section

28

Finding More Composables

All of the other composables work as well! The amazing thing about

Compose is that you can copy/paste composables between platforms.

List of Composables
https://developer.android.com/reference/kotlin/androidx/compos
e/material/package—-summary

Sample Code
https://foso.github.io/Jetpack-Compose-Playground/
https://developer.android.com/jetpack/compose/components

29

https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://foso.github.io/Jetpack-Compose-Playground/
https://foso.github.io/Jetpack-Compose-Playground/
https://foso.github.io/Jetpack-Compose-Playground/
https://foso.github.io/Jetpack-Compose-Playground/
https://foso.github.io/Jetpack-Compose-Playground/
https://developer.android.com/jetpack/compose/components

Managing State

Android-specific issues.

What is unique about Android?

The OS has control over applications at a deep level.
* Application components only communicate through the OS via intents.

* The OS can launch and control specific application components.
* e.g., Your application can use a Photo Capture screen from a different application.

* The OS was designed around devices with very limited resources.

 Rotating the device will cause the Ul to be reloaded. /!
* Pre-compose? The Ul was completely reloaded, and Ul state is lost.
* Compose? This forces recomposition.

* The OS may terminate your application if it needs resources. /!
* You need to handle this as well, otherwise you will lose data!

Managing Compose State

@Composable
fun ChatBubble(
message: Message

) {
var showDetails by rememberSaveable { mutableStateOf(false) }

ClickableText(
text = AnnotatedString(message.content),
onClick = { showDetails = !showDetails }
) This keyword will
retain state
if (showDetails) { across activity
Text(message.timestamp) and process
} recreation.

hy

32

Caveats

rememberSaveab'le stores data in a Bundle
* this is a special Android specific data structure to hold values.

* It only works for primitives!

To store anything more complex, you may need additional APIs.
* e.g., making a class Parcelable.
* See Ways to store state

33

https://developer.android.com/develop/ui/compose/state

Interactivity

Handling screen events, key presses.

34

Interaction Styles

What types of interaction do we need to support on a mobile device?

1. Multi-touch for primary input.

* Tapping on widgets to activate e.g. touch a text widget to enter text; touch a
button to activate it.

e Dragging and other gestures.

2. Keyboard input as secondary.
e Soft-keyboard (on-screen).

Multi-touch Widgets

This is exactly the same as desktop. You override the handler functions for the
widgets, providing it with a lambda function that is executed when the event fires.

FloatingActionButton(onClick = { /* something %/ }) {
Text("FloatingActionButton")
}

36

Touch Gestures

You can apply gesture modifiers to make the composable listen to gestures.

var log by remember { mutableState0f("") }

Column {
Box (
Modifier
.size(100.dp)
.background(Color.Red)
.pointerInput(Unit) {
detectTapGestures { log = "Tap!" }
detectDragGestures { _, _ — 1log = "Dragging" }
}.
)

37

https://developer.android.com/jetpack/compose/touch-input/pointer-input/understand-gestures

Key Gestures

@Composable
fun SimpleFilledTextFieldSample() {
var text by remember { mutableStateOf("Hello") }

Label
TextField(Hello

value = text,

onValueChange = { text = it },
label = { Text("Label") }

hy

@Composable
fun SimpleOutlinedTextFieldSample() {

~ Label

var text by remember { mutableStateOf("") }
Hello Compose

OutlinedTextField(

value = text,
onValueChange = { text = it },
label = { Text("Label") }

38

Reference

e Google. 2025. Android Developer Portal.

* Google. 2025. Compose Lifecycle.
* Google. 2025. Guide to App Architecture.
* Google. 2025. State and Jetpack Compose.

41

https://developer.android.com/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-lifecycle.html
https://developer.android.com/topic/architecture
https://developer.android.com/develop/ui/compose/state

