
Building
Mobile Applications

CS 346 Applica-on
Development

Smartphone Design
• Smartphones as personal, portable compu2ng.
• Originally a mashup of other devices.

• “An iPod, a phone, an internet communicator”.
• Mobile phone category evolved over 2-3 years.

• What makes them unique?
• Touch-screens! Touch input, customizable output.
• Op-mized for simple, ad hoc interac-on.
• A single device for all your needs (data).

• Design concerns
• Processing efficiency, baMery life.
• Security! Applica-ons needed to be sandboxed.

The first iPhone, introduced in Jan
2007, and available for sale in June
of that year. Apple sold more than 6
million phones before replacing this
model with the iPhone 3G in 2008.

3

Android
• History of Android

• Founded by Andy Rubin 2003 to build a camera OS.
• Pivoted to phone OS 2004, sold to Google in 2005.
• By Dec 2006 Google was tesGng phones w.

keyboards.
• Redesigned for touch-screens before phones

launched.

• Android is the world’s “most popular OS”.
• Based on Linux kernel; porGons are open source.
• Ships on different devices e.g., TV boxes, phones.
• “Billions of Android devices” have been shipped.

The first Android phone was the
HTC Dream, which launched in
October 2008 – approximately 18
months after the first iPhone.

4

Android Features
• Graphical User Interface

• ApplicaGons presented as pages of icons.
• An applicaGon usually runs full-screen.

• Forward/backward screen naviga2on within an applica2on.
• Navigate through running applica2ons.

• Custom UI displays
• Side-by-side applica2ons, Live-regions

• Tight integraAon with Google applicaAons
• Gmail, Google docs, other services.
• Google search, “Ok Google” voice chat.

• Wider range of hardware
• Many vendors, who produce a wider range of devices.

5

Getting Started
How to create an Android project.

6

Step 1: Create a Project

An Android project is just a
Gradle project with specific
dependencies.
• Requires an IDE with the

Android plugin installed.
• IntelliJ IDEA or Android

Studio are both fine.

7

8

Step 2: Check the directory structure
An Android project should be runnable
after you walk through the creation wizard.

Same general structure as any other
Gradle project.
• Some additional configuration files.
• Some changes when we run and test

code.
• TBD in a few slides.

[versions]
agp = "8.10.1"
kotlin = "2.0.0"
coreKtx = "1.15.0"
junit = "4.13.2"
junitVersion = "1.2.1"
espressoCore = "3.6.1"
lifecycleRuntimeKtx = "2.8.7"
activityCompose = "1.9.3"
composeBom = "2024.10.01"
composeNavigation = "2.8.3"
serialization = "1.7.2"

[libraries]
androidx-core-ktx = { group = "androidx.core", name = "core-ktx", version.ref = "coreKtx" }
junit = { group = "junit", name = "junit", version.ref = "junit" }
androidx-junit = { group = "androidx.test.ext", name = "junit", version.ref = "junitVersion" }
androidx-espresso-core = { group = "androidx.test.espresso", name = "espresso-core", version.ref = "espressoCore" }
androidx-lifecycle-runtime-ktx = { group = "androidx.lifecycle", name = "lifecycle-runtime-ktx", version.ref =
"lifecycleRuntimeKtx" }
androidx-activity-compose = { group = "androidx.activity", name = "activity-compose", version.ref = "activityCompose" }
androidx-compose-bom = { group = "androidx.compose", name = "compose-bom", version.ref = "composeBom" }
androidx-ui = { group = "androidx.compose.ui", name = "ui" }
androidx-ui-graphics = { group = "androidx.compose.ui", name = "ui-graphics" }
androidx-ui-tooling = { group = "androidx.compose.ui", name = "ui-tooling" }
androidx-ui-tooling-preview = { group = "androidx.compose.ui", name = "ui-tooling-preview" }
androidx-ui-test-manifest = { group = "androidx.compose.ui", name = "ui-test-manifest" }
androidx-ui-test-junit4 = { group = "androidx.compose.ui", name = "ui-test-junit4" }
androidx-material3 = { group = "androidx.compose.material3", name = "material3" }
navigation-compose = { module = "androidx.navigation:navigation-compose", version.ref = "composeNavigation" }
kotlinx-serialization-json = { module = "org.jetbrains.kotlinx:kotlinx-serialization-json", version.ref = "serialization"}

[plugins]
android-application = { id = "com.android.application", version.ref = "agp" }
jetbrains-kotlin-android = { id = "org.jetbrains.kotlin.android", version.ref = "kotlin" }
kotlin-serialization = { id = "org.jetbrains.kotlin.plugin.serialization", version.ref = "kotlin" }
compose-compiler = { id = "org.jetbrains.kotlin.plugin.compose", version.ref = "kotlin" }

Step 3: Dependencies

• You will have a large
number of starting
dependencies!

• Add more as needed
through the version catalog.

9

Running on a virtual device

Tools > Android > Android Device Manager
10

DEMO!

Architecture
How is Android designed?

11

Application Design
A typical Android applica2on contains mul2ple components, including
some combina2on of:

Component Description
Activities Screens, each with its own state and lifecycle.
Fragments Portions of a screen that can be managed separately.
Services Provides long-running operations in the background.
Content Providers Shares data with other applications.
Broadcast Receivers Listens for system events e.g., phone call, airplane mode.

12

These components are registered with the OS, and applica6ons can request to use each
other’s components e.g., you can use an exis6ng `camera` component instead of crea6ng one.

Key takeaway: your
application needs to support
being paused or stopped
(typically by saving data for
later).

13

AcAvity Lifecycle
There are three key loops that these phases attempt to capture:
• The entire lifetime of an activity happens between the first call to
onCreate(Bundle) through to a single final call to onDestroy(). Setup is
done in onCreate(), and resources are released by onDestroy().

• The visible lifetime of an activity happens between a call to onStart()
until a corresponding call to onStop(). During this time the user can see
the activity on-screen, though it may not be in the foreground.
• The foreground lifetime of an activity happens between a call to
onResume() until a corresponding call to onPause(). During this time the
activity is in visible, active and interacting with the user. An activity can
frequently go between the resumed and paused states e.g. sleeping.

14

Warning: Data loss on rotaAon

• Ac2vi2es can be restarted when
• The OS decides that it needs to reclaim resources (uncommon),
• You rotate the device (common!)

• Restar2ng ac2vi2es means relaunching and losing data.
• How do you avoid this?

• Save and restore data manually
• Override the onPause() and onResume() methods and manage a Bundle of data.

• Use a ViewModel as a base class for your custom ViewModel.
• Android will automa6cally save and restore VM data!!
• hIps://developer.android.com/topic/libraries/architecture/viewmodel

15

⚠

https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/topic/libraries/architecture/viewmodel

Applica2on Structure
What does it look like again?

16

Project Structure

Your applicaAon structure should look the same
as discussed in the Architecture lecture, with
data/, domain/ and presentaAon/ layers.

Differences compared to a desktop applicaAon:
• Your entry point is the MainActivity class.
• Manifest file describes your project structure.
• Android stores resources in the res folder

structure. There is an API to load them.

17

MainAcAvity

class MainActivity : ComponentActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 enableEdgeToEdge()

 val database= getRoomDatabase(this)
 val taskModel = TaskModel(database.taskDao())
 val viewModel = TaskViewModel(taskModel)

 setContent {
 MMTheme {
 TaskView(viewModel) !// top-level View/Composable
 }
 }
 }
}

18

MainActivity is a class that
extends ComponentActivity.

Activities have built-in methods
that mirror their lifecycle:

onCreate(), onStart(), onStop()
and so on.

The onCreate() method is the
first method that is called when
the MainActivity is instantiated

and serves as the entry point for
your application.

MainActivity.kt

GitHub: demos > mm-android

ApplicaAon Manifest

Every Android project has a single `AndroidManifest.xml` file
This is an XML file that describes your applica2on structure.
• It lists components and proper2es required to compile, install and run

your applica2on. e.g.,
• Iden-fies the `MainAc-vity` which launches on startup i.e., `main` method.
• Iden-fies the name and icon to use for your applica-on.
• Loca-on of resources to include.
• Permissions that the applica-on requires

• See Applica2on Manifest Overview

You can probably
ignore this file UNLESS
you need permissions
(file system, network)

19

https://developer.android.com/guide/topics/manifest/manifest-intro

20

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http:!//schemas.android.com/apk/res/android"
 xmlns:tools="http:!//schemas.android.com/tools">

 <application
 android:allowBackup="true"
 android:dataExtractionRules="@xml/data_extraction_rules"
 android:fullBackupContent="@xml/backup_rules"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.Mmandroid"
 tools:targetApi="31">
 <activity
 android:name="ca.uwaterloo.mm.MainActivity"
 android:exported="true"
 android:label="@string/app_name"
 android:theme="@style/Theme.Mmandroid">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"!/>

 <category android:name="android.intent.category.LAUNCHER"!/>
 !</intent-filter>
 !</activity>
 !</application>

!</manifest>

AndroidManifest.xml

GitHub: demos > mm-android

AcAvity: View relaAonship
We use View classes for screens. How do they relate to AcAviAes?

1. Each View is an AcAvity (early-Android).
• Every screen is represented by a corresponding AcGvity.
• You would use an Intent (message to the OS) to swap between them.
• This is not recommended! It’s very slow. ❌

2. You fewer AcAviAes, each is configurable using Fragments (old Android)
• You have few AcGviGes, but each one is composed of pieces called Fragments.
• You write logic to load the AcGvity, then load suitable fragments.
• Not recommended! Faster, but sGll generally very slow. ❌

3. One AcAvity, and you just choose your View to show (new Android)
• Use your MainAcGvity as a container. Each view is a single top-level composable!
• NavigaGon code/libraries just chooses which View to launch. ✔

21

https://developer.android.com/reference/android/content/Intent

22

@Composable
fun TaskView(viewModel: TaskViewModel) {
 val items by viewModel.getAll().collectAsState(initial = emptyList())

 Scaffold(
 topBar = {
 Toolbar(
 addHandler = { viewModel.showAddDialog = true },
 editHandler = { viewModel.showEditDialog = true },
 deleteHandler = {
 val task = viewModel.selectedTask !?: return@Toolbar
 viewModel.delete(task)
 viewModel.selectedTask = null
 }
)
 },
 bottomBar = { },
) { padding ->
 Box(
 modifier = Modifier.fillMaxSize().padding(padding)
) {
 if (items.isEmpty() !&& !viewModel.showAddDialog !&& !viewModel.showEditDialog) {
 Text(
 "No tasks available. Add a task using the + button.",
 modifier = Modifier.align(Alignment.Center).padding(16.dp)
)
 } else {
 !// …
 }

presentation/
 TaskView.kt

The presentation layer
communicates with the
domain layer. i.e.
TaskViewModel and
TaskEntity classes.

None of this is Android-
specific; it’s straight
Compose code.

GitHub: demos > mm-android

23

!/*
 * Android ViewModel
 * This class holds state for our Application Composable function.
 * The built-in ViewModel survives screen rotation automatically.
 !*/

class TaskViewModel(val taskModel: TaskModel) : ViewModel() {
 var selectedTask by mutableStateOf<Task?>(null)
 var showAddDialog by mutableStateOf(false)
 var showEditDialog by mutableStateOf(false)

 fun getAll(): Flow<List<Task!>> {
 return taskModel.getAll()
 }

 fun getById(id: Int): Task {
 return runBlocking {
 taskModel.getById(id)
 }
 }

fun deleteAll() {
 viewModelScope.launch {
 taskModel.deleteAll()
 }
}

!// …

domain/
 TaskViewModel.kt

The domain layer
communicates with the
data layer.

None of this code is
Android specific.

We’ll review the
applicaUon in more detail
in the database lecture.

GitHub: demos > mm-android

Android Composables
What Compose functionality is specific to mobile development?

24

Composable: Scaffold

@Composable
fun ScaffoldDemo() {
 val materialBlue700= Color(0xFF1976D2)
 val scaffoldState = rememberScaffoldState(rememberDrawerState(DrawerValue.Open))
 Scaffold(
 scaffoldState = scaffoldState,
 topBar = {
 TopAppBar(title = {Text(“TopAppBar")}, backgroundColor = materialBlue700)
 },
 floatingActionButtonPosition = FabPosition.End,
 floatingActionButton = { FloatingActionButton(onClick = {}){Text(“X”)} },
 drawerContent = { Text(text = "drawerContent") },
 content = { Text("BodyContent") },
 bottomBar = {
 BottomAppBar(backgroundColor = materialBlue700) {Text(“BottomAppBar”)}
 }
)
}

25

Composable: Image
@Composable
fun ImageResourceDemo() {
 val image: Painter = painterResource(id = R.drawable.composelogo)
 Image(painter = image,contentDescription = "")

}

26

Composable: Floating Action Buttons

@Composable
fun ExtendedFloatingActionButtonDemo() {
 ExtendedFloatingActionButton(
 icon = { Icon(Icons.Filled.Favorite,"") },
 text = { Text("FloatingActionButton") },
 onClick = { /*do something*/ },
 elevation = FloatingActionButtonDefaults.elevation(8.dp)
)

}

@Composable
fun FloatingActionButtonDemo() {
 FloatingActionButton(onClick = { !/*do something!*/}) {
 Text("FloatingActionButton")
 }

}

27

Composable: Card
@Composable
fun CardDemo() {
 Card(
 modifier = Modifier.fillMaxWidth().padding(15.dp).clickable{ },
 elevation = 10.dp
) {
 Column(modifier = Modifier.padding(15.dp)) {
 Text("Jetpack Compose Playground")
 Text("Now you are in the Card section")
 }

 }
}

28

Finding More Composables

29

All of the other composables work as well! The amazing thing about
Compose is that you can copy/paste composables between platforms.

List of Composables
https://developer.android.com/reference/kotlin/androidx/compos
e/material/package-summary

Sample Code
https://foso.github.io/Jetpack-Compose-Playground/
https://developer.android.com/jetpack/compose/components

https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary
https://foso.github.io/Jetpack-Compose-Playground/
https://foso.github.io/Jetpack-Compose-Playground/
https://foso.github.io/Jetpack-Compose-Playground/
https://foso.github.io/Jetpack-Compose-Playground/
https://foso.github.io/Jetpack-Compose-Playground/
https://developer.android.com/jetpack/compose/components

Managing State
Android-specific issues.

30

What is unique about Android?

The OS has control over applica2ons at a deep level.
• ApplicaAon components only communicate through the OS via intents.
• The OS can launch and control specific applicaAon components.

• e.g., Your applicaGon can use a Photo Capture screen from a different applicaGon.

• The OS was designed around devices with very limited resources.
• RotaAng the device will cause the UI to be reloaded.

• Pre-compose? The UI was completely reloaded, and UI state is lost.
• Compose? This forces recomposiGon.

• The OS may terminate your applicaAon if it needs resources.
• You need to handle this as well, otherwise you will lose data!

⚠

⚠

31

Managing Compose State

@Composable
fun ChatBubble(
 message: Message
) {
 var showDetails by rememberSaveable { mutableStateOf(false) }

ClickableText(
 text = AnnotatedString(message.content),
 onClick = { showDetails = !showDetails }
)

if (showDetails) {
 Text(message.timestamp)
 }
}

This keyword will
retain state

across acJvity
and process
recreaJon.

32

Caveats

rememberSaveable stores data in a Bundle
• this is a special Android specific data structure to hold values.
• It only works for primi-ves!

To store anything more complex, you may need addi-onal APIs.
• e.g., making a class Parcelable.
• See Ways to store state

33

https://developer.android.com/develop/ui/compose/state

Interactivity
Handling screen events, key presses.

34

InteracAon Styles

What types of interac-on do we need to support on a mobile device?

1. Mul--touch for primary input.
• Tapping on widgets to ac-vate e.g. touch a text widget to enter text; touch a

buMon to ac-vate it.
• Dragging and other gestures.

2. Keyboard input as secondary.
• Soe-keyboard (on-screen).

35

MulA-touch Widgets

This is exactly the same as desktop. You override the handler func-ons for the
widgets, providing it with a lambda func-on that is executed when the event fires.

 FloatingActionButton(onClick = { !/* something !*/ }) {
 Text("FloatingActionButton")
 }

36

Touch Gestures

37

You can apply gesture modifiers to make the composable listen to gestures.

var log by remember { mutableStateOf("") }
Column {

Box(
Modifier

.size(100.dp)

.background(Color.Red)

.pointerInput(Unit) {
detectTapGestures { log = "Tap!" }
detectDragGestures { _, _ -> log = "Dragging" }

}
)

}

https://developer.android.com/jetpack/compose/touch-input/pointer-input/understand-gestures

Key Gestures

38

@Composable
fun SimpleFilledTextFieldSample() {

var text by remember { mutableStateOf("Hello") }

TextField(
value = text,
onValueChange = { text = it },
label = { Text("Label") }

)
}

@Composable
fun SimpleOutlinedTextFieldSample() {

var text by remember { mutableStateOf("") }

OutlinedTextField(
value = text,
onValueChange = { text = it },
label = { Text("Label") }

)
}

Reference

• Google. 2025. Android Developer Portal.
• Google. 2025. Compose Lifecycle.
• Google. 2025. Guide to App Architecture.
• Google. 2025. State and Jetpack Compose.

41

https://developer.android.com/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-lifecycle.html
https://developer.android.com/topic/architecture
https://developer.android.com/develop/ui/compose/state

