Lecture 1: Introduction

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

About the Instructor

* Instructor:
* Assistant Professor in the School of Computer Science
* Email: xiaohu@uwaterloo.ca
* https://cs.uwaterloo.ca/~xiaohu/
» Office hour: Tuesdays, 10 AM- 11 AM

* Why CS348: intro to database management?
* What is my expectation?

* What is your expectation?

mailto:xiaohu@uwaterloo.ca
https://cs.uwaterloo.ca/~xiaohu/

Outline For Today

* Overview of database management systems (DBMS)
* Challenges with data management

* How DBMS help overcome these challenges

e Administrative Information

So, what is a DBMS?

From Oxford Dictionary:
: an organized body of related information
)
(): a software system that facilitates the

creation, maintenance, and use of an electronic
database

What is a DBMS?

‘ Applications ‘

Queries/modifications l TAHSW@FS/F esponses

=

$ File system interface

f 0S)

@ Storage system interface

E Disk(s) j

Why Do App Developers Need a DBMS?

* Challenges to overcome if we do NOT use a DBMS:
* Physical data design

* Query processing

Data integrity

Concurrency

Recovery and Backup

Why Do App Developers Need a DBMS?

* Application: Order and Inventory Management in E-commerce

Customers & Product Managers &
End Devices Shipments & Arrivals Analytics Apps
Users g
q @ ?_ n L
oy v A
(° ® A ‘At
App Software/
Servers
Storage Software Service Requirement

Server & Device
(Thousands of requests per sec)

Write Storage Software in Java/C++?

* Directly use the file system of the OS.
* One or more files for orders, customers, products etc.

— T
— ‘ I

—Orders.txt cuystomers.txt Products.txt

* Possible problems in physical data design
* For each customer store name, birthdate
* How many bytes for each record?
* Encoding of string names? Fixed or variable length?
* How to quickly find arecord?

Physical Data Design

* Variable-length design

name-len (bytes)

name payload

birthdate (fixed 4 bytes)

11

Alice Smith

2001/09/08

19

Alexander Desdemona

2002/05/20

6

Ali Jo

1992/02/25

26

Montgomery Cambridgeshire

1992/02/25

* Fixed-length design

//_\
Overflow ptr lep—Tname (16 byte)\\birthdate (4 bytes)
= ~—
null ;I/A(ce Smith ---------- 2001/09/08 ona ,idgeshire
o “T19 |Alexander Desdem |2002/05/20 /
null |6 |[AliJo 1992/02/25 /
1\ | 26 | Montgomery Cambr 199/2L0z7£

S—Customerséxt—

Customer-overflow.txt

Physical Data Design

* Chained Design: Maybe to keep in sorted alphabetical order

name-leng (bytes)

name payload

birthdate (fixes 4 bytes)

prev ptr

next ptr

10

ro | 11 | Alice. | 2001/09/08 |ro |r3

ri | 19 | Alexander.

2002/05/20

null |.r2
1

-~

r2 |6 |AliJo |1992/02/25 |r1 |ro

r3 | 26 | Montgom.

1992/02/25”(r0 | r7

>

\

-~

r4 |... \

\..

rs |... /

/

/

Customers.txt

Many design options and difficult for app developers!

Physical data design should be independent!

Query Processing

* Who are the top-paying customers?

» Compute total sales by customer (assume fixed-

length records)

file = open(“Orders.txt”)
HashTable ht;
for each line in file:
/[some code to parse custID and price
if (ht.contains(custID))

ht.put(custID, ht.get(custID) + price)
else: ht.put(custID, price);
file.close();

O1 | Cust1 BookA $20
O2 | Cust2 WatchA | $120
O3 | Cust1 DiapersB | $30
O4 | Cust3 MasksA | $15
Orders.txt

How to reuse it for other queries, for other physical data layouts?
Writing an algorithm for each task won’t scale!

1

Query Processing

* Many, many more important business analytical
questions:
* List of Orders that bought a product that cost > $500
e Last Order from Cust4?
* Who are the closest co-purchasers of Cust4?

* There are numerous possible algorithms and
implementations; it is difficult to choose

* Soring, hashing, or building indexes
* What is the cost of each possible algorithm?
* How to choose the “optimal” one?

* Query execution details should be independent!

Integrity

* Many ways data can be corrupted

* Often: Wrong application logic or bugs

in application
« “Checkout As Guest”

 Writes the Order and Customer records?

all

13

A
O8 |Bob | TVA | $90 /| Bob 19)6/05/07
O7 | Bob | BookC | $17 Bob | 1999/05/07
N
"~ -
. . o K

Likely an inconsistency. We’d —= i _ B

want to enforce the constraint: — — —
No duplicate customer records! Orders.txt — Products.txt
- Customers.txt T

Integrity

* Many ways data can be corrupted
* Often: Wrong application logic or bugs

in application

o
e “Checkout As Guest” -
* Writes the Order and Customer records? !
* Only writes the Order record? X
B
/]
O7 | Bob | BookC $17X
L
Likely an inconsistency. We’d want /
to enforce the constraint: Every _C 1 _D
order’s customer record exists! — — —
Orders.txt —

14

N—

Customers.txt

Products.txt
P

15

Integrity

* Many ways data can be corrupted:
* Often: Wrong application logic or bugs

in application 2
« “Checkout As Guest” i D
* Writes the Order and Customer records? !
 Only writes the Order record? XX
— —
Incorrectly handling consistency
) : 2
violates data integrity! - —
O\rders.txt Customers.txt Productﬁ

time

v

Concurrency

Buy Product Subroutine(string prodName):
(prod, numinStock) = readProduct(prodName)
If (numiInStock > 0):

writeProduct (prod, numinStock - 1)

else throw (““Cannot buy product!”);

* Alice and Bob concurrently order BookA
* suppose 1leftin stock

@
dh

=
read: (A1)

write: (A, 0)

g

read: (A, 0)

|!E| No Book

v

@
dh

read: (A,0)

No Book

v

g

=
read: (A1)

write: (A,0)

LE

@ N
4 dh
XX X

read: (A,1) read: (A1)
write: (A,0)
write: (A,0)

X

Concurrency: Global DB Lock

e Both Alice and Bob order BookA

Bob 2 g Alice
lock DB X Wait | lock DB/
read (A, 1)
:gj write (A, 0) Safe but inefficient!
release lock
lock DB v

Product | NuminStock

BookA 1
BookB 7

Concurrency: Global DB Lock

e Alice orders BookA and Bob orders BookB

Bob 2 g Alice
lock DB X Wait | lock DB/
Bob had no conflicts, read (A, 1)
SO was unnecessarily write (A, 0)
blocked release lock
lock DB v

Product | NuminStock

BookA 1
BookB 7

o

19

Concurrency: Record-level Lock

* Alice, Bob order BookA and Carmen orders BookB

Bob ‘@ Alice @ 3 Carmen
dh dh
lock: (A) vV lock: (A) X Wait lock: (B) v/
read (A, 1) read (B, 7)
()]
£ write (A, 0) write (B, 6)
release lock A release lock B
lock: (A) vV
— D
Product | NuminStock Safe and Efficient.
& What can go wrong?
8 BookA 0
- ﬂ BookB 6 |

Concurrency: Deadlocks!

* Alice, Bob order BookA and BookB together

Bob ‘@ @ Alice
dh dh
lock: (A) v
lock: (B) v

time

lock: (B) X Wait
lock: (A) X Wait

e >
Product | NumiInStock
@ How can we detect
~ : and avoid deadlocks?
a BookA 1
g BookB 7
" — e

Concurrency

* What is a correct/incorrect state upon concurrent
updates to data?

* What protocols or algorithms can ensure a correct
state?

* How to guarantee correctness while ensuring
efficiency?

Recovery and backup

* What if your disk fails in the middle of an order?
* What if your server software fails due to a bug?

* What if a power outage in the machine storing files?

=

L

Product | NumInStock

‘4'; BookA 1

BookB 7

23

Recovery and backup

* What if your disk fails in the middle of an order?

* What if your server software fails due to a bug?

* What if a power outage in the machine storing files?

Suppose Alice orders both BookA and BookB

-, : L
2 write (A, 0) Failure happens before (B, 6) is written!
4
1 /
5 \write (B, 6) Inconsistent state! | |
—e— How to recover from inconsistent state?
Product | NumInStock Product | NumlinStock
, BookA 0 X BookA
BookB 7 BookB

Summary of challenges

* Physical data design
* Query processing

* Data integrity

* Concurrency

* Recovery and backup

A database management system (DBMS)
helps us solve all the discussed problems

The birth of DBMS

* History of Database:
https://www.youtube.com/watch?v=KG-mgHoXOXY

(from Computer History Museum)

* We will focus on Relational DBMS (RDBMS)

26

https://www.youtube.com/watch?v=KG-mqHoXOXY

Data Model

e Relational Model

e Data is modeled as a set of relations or tables
* Much higher-level abstraction than bits/bytes

Customer Orders Product
name birthdate orderID cust product price product | numinStock
Alice 2001/09/08 001 Alice Book 20 Book 20
Bob 1999/05/19 002 Bob Beer 15 Beer 15
TABLE Customers
name

birthdate ;

Data Model

* Physical Data Independence:

* Throughout the lifetime of the application, the RDBMS can
change the physical layout for performance or other
reasons and the applications is oblivious to this and
continues working as-is.

* Example: A new column can be added that changes the
record design

* Example: A compressed column can be uncompressed

High-level Query Language

* SQL: Structured Query Language

you can describe the output of the
computation but not how to perform the computation

* Recall managers’ question: Who are top paying

customers? Orders
. orderID cust product price
cust, sum(price) as sumPay ,
001 Alice BookA 20
Orders
002 Bob BookB 15

sumPay DESC

* No procedural description of how to execute the
query

30

Query Optimizer

* DBMS automatically generates an efficient algorithm
for executing the query:

FROM Orders

ORDER BY sumPay DESC

#1 HashAggregate
Query optimizer delegates cust

the responsibility of finding an » Seq Scan 5
efficient algorithm to execute orders
the query

Integrity

* Recall the bug in “Checkout As Guest”

* In RDBMS: add uniqueness constraints (primary key
constraints)

 Writes the Customer record : TAE]LE(CUS;OmerS
name varchar(255),

* Assume Bob shops again DOB DATE, >

* (Bob, 1999/05/07) is duplicated!);

templatel=# INSERT INTO Customers Values ('Bob', '1999/05/07');
INSERT 0 1
templatel=# INSERT INTO Customers Values ('Bob', '1999/05/07');

duplicate key value violates unique constraint "customers_pkey"
Key (name)=(Bob) already exists.

time

Concurrency
% s 9
Zx Zx 555!
read: (A1)
write: (A, 0)
read: (A, 0) read:(A,0)
|| No Book | No Book

(Simplified) SQL:

BEGIN TRANSACTION

UPDATE Products

SET numInStock = numInStock - 1
WHERE name = “BookA”
INSERT INTO Orders

VALUES (“Alice”, “BookA”, $20)
COMMIT

) @)
dh dh dh
= =
read: (A1) read: (A,1) read: (A1)
write:(A,0)
write:(A,0)

write:(A,0)

[X

Backup and Recovery

e Failure scenario: Alice orders both BookA and BookB

* Suppose a power failure occurs and the DBMS fails in
the middle of committing the transaction

@

write (A, 0)
= write (B, 6)

e —

Product | NumiInStock Product | NuminStock

, BookA 0 X BookA 1 \/

BookB 7 BookB 7

Summary

DBMS is an indispensable core system software to
develop any application that stores, queries, and
processes data.

A Glimpse of Current DBMS Market

ﬁ Google

VERTICA
SQL Server § mongoDB Cockroach pe
NEOLJ e - R
Virtuoso

: S N Materialize
it ik o databricks
Segsnowflake | " Hggardog . amazon

Q, TigerGraph e

Hundreds of companies producing DBMSs: Many RDBMS/SQL, but
also graph, RDF, Document DB, Key-value stores etc..

36

4 Turing Award Winners!

Introduced DB Systems

 Charles Bachman, 1973

1
° Edgal‘ F. Codd, 1981 "'} High-level/Declarative Programming:

Relational Data Model & Algebra

Transactions:
concurrent data-manipulation

Relational DBMS
(e.g. Ingres, Postgres) and
modern DBMSs
(e.g. C-store, H-store, SciDB)

Outline For Today

e Administrative Information

Course components

(Lectures 1-12)

Relational algebra

sQL

Database design

(Lectures 13-20)

Storage

Indexing

* Query processing and optimization
* Transactions

* Concurrency and Recovery

More about the Teaching Team

* Instructional support coordinator:
* Email: sldavies(@uwaterloo.ca

* |JAs and TAs
* Guy Coccimiglio (1A)
 Nimmi Rashinika Weeraddana (IA) * Boyili
e Lasantha Fernando Amin Rezaei
* Shufan Zhang Zhiang Wu
* Mayank Jasoria Christina Li

* Guest Lecture (Week 8):

Zhengyuan Dong

» Office Hours will be posted on Piazza/Learn

mailto:sldavies@uwaterloo.ca

Who to reach out to?

* Lecture-related questions: reach out to me

* Assignment-related (such as regrade requests)
and Project-related questions: reach out to IA
and the respective TA

* Approved regrade, Late policy, Verification of
illness: reach out to Sylvie and cc me
* Must email Sylvie for accessibility/short term absence!

since | do not
track them.

41

Textbook

* Database System Concepts (Seventh Edition)
Abraham Silberschatz, Henry F. Forth and
S.Sudarshan, McGraw Hill.

* A hard copy in Library

Logistics

* Course Website:
* https://student.cs.uwaterloo.ca/~cs348/
e Course schedule, lecture notes

* Learn:
* https://learn.uwaterloo.ca/
* Assignment questions, Partial solutions, Project info

* Piazza for student discussion, Q&A, TAs info:
* https://piazza.com/uwaterloo.ca/spring2025/cs348spring2025

* For student-student discussions (24-hour policy)

* Work submission: Crowdmark/Marmoset/Learn
* Watch your emails for the links

42

https://student.cs.uwaterloo.ca/~cs348/
https://learn.uwaterloo.ca/
https://piazza.com/uwaterloo.ca/spring2025/cs348spring2025

Marking and Late Policies

* Marking and appeals:

* For everything, there will be that will
be indicated on the front page

* No appeals will be accepted past this date unless you
were sick the entire period until the appeal date

* Late assignments/project deliverables

* Late assignments will be accepted for past the
due date, but...

* For past the due date, a will be
applied (cumulatively) for assignments

* For past the due date, a will be

applied (cumulatively) for projects

44

Assessments

* 3 Assignments

* 1 Midterm Exam (Jun 27, 4:30pm - 6pm)

* 1 Final Exam

* Group Project (Optional): Choose 1 mark breakdown
* But both exams are mandatory!

Mark Breakdown Project-based
30%

3 Assignments 30%

Midterm Exam 15% 30%
20% 40%
Project 35%

Any use of GenAl is the assessments must be cited. You are accountable for
the content and accuracy of all work you submit in this class.

Lecture

released on

* Lecture format:
(Don’t miss this!)
* Key points and Examples
* Exercises with partial solutions

* Will be using some lecture materials from Prof. Jun
Yang, Prof. Xi He and Prof. Sujaya Maiyya

Project: DB-supported applications

* Team of 4-5 students (minimum 4, maximum 5)

* Project Timeline
* Milestone o: form a team by Thu, May 22
* Milestone 1: proposal by Thu, Jun 19
* Milestone 2: mid-term report by Tue, Jul 8

* Milestone 3: demo + report + code
* Demo in Week 12: From Mon, Jul 21 to Thu, Jul 24
* Report and code by Tue, Jul 29

* Instructions released on Learn

e Start to

 Members from 001, 002 and 003 sections are allowed.
* Piazzais a good place to find teammates.

Project

* Project demos from previous years

Video Demo for NBA Season Statistics

Lesly Hoeger

47

https://www.dropbox.com/sh/c419517d2d8gqub/AABcYL-Qo03bMV3w9SSv8OaXa?dl=0

-

- /

Your turn to be creative

http://www.yummymummyclub.ca/sites/default/files/styles/large/public/field/image/teaching_kids_creative_skills.jpg

48

What’s next?

e Lecture 2: Relational model

	Slide 1: Lecture 1: Introduction
	Slide 2: About the Instructor
	Slide 3: Outline For Today
	Slide 4: So, what is a DBMS?
	Slide 5: What is a DBMS?
	Slide 6: Why Do App Developers Need a DBMS?
	Slide 7: Why Do App Developers Need a DBMS?
	Slide 8: Write Storage Software in Java/C++?
	Slide 9: Physical Data Design
	Slide 10: Physical Data Design
	Slide 11: Query Processing
	Slide 12: Query Processing
	Slide 13: Integrity
	Slide 14: Integrity
	Slide 15: Integrity
	Slide 16: Concurrency
	Slide 17: Concurrency: Global DB Lock
	Slide 18: Concurrency: Global DB Lock
	Slide 19: Concurrency: Record-level Lock
	Slide 20: Concurrency: Deadlocks!
	Slide 21: Concurrency
	Slide 22: Recovery and backup
	Slide 23: Recovery and backup
	Slide 24: Summary of challenges
	Slide 25: A database management system (DBMS) helps us solve all the discussed problems
	Slide 26: The birth of DBMS
	Slide 27: Data Model
	Slide 28: Data Model
	Slide 29: High-level Query Language
	Slide 30: Query Optimizer
	Slide 31: Integrity
	Slide 32: Concurrency
	Slide 33: Backup and Recovery
	Slide 34: Summary
	Slide 35
	Slide 36: 4 Turing Award Winners!
	Slide 37: Outline For Today
	Slide 38: Course components
	Slide 39: More about the Teaching Team
	Slide 40: Who to reach out to?
	Slide 41: Textbook
	Slide 42: Logistics
	Slide 43: Marking and Late Policies
	Slide 44: Assessments
	Slide 45: Lecture
	Slide 46: Project: DB-supported applications
	Slide 47: Project
	Slide 48
	Slide 49: What’s next?

