Lecture 2:
Relational Model

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003



Edgar F. Codd (1923-2003)

e Inventor of the relational model
and algebra while at IBM

- * Turing Award, 1981
& . & Pilotinthe Royal Air Force in WW2

http://en.wikipedia.org/wiki/File:Edgar_F_Codd.jpg



Outline

e Part 1: Relational data model

* Part 2: Relational algebra



Relational data model

Modeling data as relations or tables, each storing
logically related information together

_ 10 03 /ﬁ abc A Book Club |
4 Milhouse 10 0'2/ gov  Student Government cm
; Lisa 8 ;j{jf dps Dead Putting SOCIety M mm
% Ralph 8 | 3 M"”d 142 dps
\\ / M’MM 123 gov
| P 857  abc
%,M 857 gov
- 456 abc

relations (or tables) 456 gov



Attributes
Group

abc A Book Club

Bart

gov Student Government

123 Milhouse 10 0.2 dps Dead Putting Society
857 Lisa 8 0.7
456 Ralph 8 0.3

Member [T
142 dps

123 gov

. 857 abc
attributes (or columns) =
456 abc

456 gov



Domain

Group

User i ome
142 10 0.9

Bart
123 Milhouse 10 0.2
=90 | LEEL
as6 |

gov Student Government

dps Dead Putting Society

Member PEIFZIN
142 dps

\ 123 gov

Strihg Int Float 857  abc
857 gov

456  abc

domain (or type)

456 gov



Tuples

User
Bart
123 Milhouse 10 0.2
. _ e
857 Lisa 8 0.7
<456  Ralph 8§ 03 7>

tuples (or rows)

Duplicates (all attr. have same val) are not allowed 857

Ordering of rows doesn’t matter

(even though output can be ordered)

Group

abc A Book Club
gov Student Government

dps Dead Putting Society

weroer ENRFTER

dps
123 gov
857 abc
gov
456 abc
456 gov



Set representation of tuples

Group

Ve gid_Lome
142 10 0.9

Bart gov  Student Government

123 Milhouse 10 0.2 edu  Dead Putting Society
857 Lisa 8 0.7
456 Ralph 8 0.3
member [P
142 dps
123 gov
User: {(142, Bart, 10, 0.9), (857, Milhouse, 10, 0.2), ... } 857  abc
857 gov
Group: {(abc, A Book Club), (gov, Student Government), ... } e
456 ov
Member: {{(142, dps), (123, gov), ...} &




Relational data model

* A database is a collection of relations (or tables)
* Each relation has a set of attributes (or columns)

* Each attribute has a unique name and a domain (or type)
* The domains are required to be atomic

Single, indivisible

piece of information

* Each relation contains a set of tuples (or rows)
* Each tuple has a value for each attribute of the relation
* Duplicate tuples are not allowed

= Simplicity is a virtue!



Schema vs. Instance
( )

* Specifies the of data
* |s defined at setup time, rarely changes

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

* Represents the data content
* Changes rapidly, but always to the schema
* Typically has additional rules

User: {(142, Bart, 10, 0.9), (857, Milhouse, 10, 0.2), ... }
Group: {(abc, A Book Club), (gov, Student Government), ... }
Member: {{(142, dps), (123, gov), ...}



Integrity constraints

e A set of rules that database instances should follow

* Example:
* age cannot be negative
* uid should be in the User relation

e uid in Member must refer to arow in User

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

User: {{142, Barto.9), (857, Milhouseo.z), oo }

Group: {(abg, A Book Club), (gov, Student Government), ... }

Member: {{142,dps),{857,)gov), ... }



Integrity constraints

* An instance is only if it follows the schema and
satisfies all the integrity constraints.

* Reasons to use constraints:
* Address consistency challenges
* Ensure data modification respects to database design
* Protect data from bugs in applications



Types of integrity constraints

* Tuple-level

* Domain restrictions, attribute comparisons, etc.
* E.g.age cannot be negative
* E.g.for flights table, arrival time > take off time

* Relation-level

(focus in this lecture)
 E.g. uid should be unique in the User relation

* Functional dependencies (week 5/6)

e Database-level

* Referential integrity -
* E.g.uid in Member must refer to a row in User with the same uid



Key (Candidate Key)

Def: A set of attributes K for arelation R if

In no instance of R will two different
tuples agree on all attributes of K

* Thatis, K canserveasa

)

: No proper subset of K satisfies the
above condition

e Thatis, K is

» Example: User (uid, name, age, pop)
* uidis a key of User
* ageis not a key (not an identifier)
* {uid, name} is not a key (not minimal), but a



Key (Candidate key)

uid | name | age | pop
142 Bart 10 0.9
123 Milhouse 10 0.2
857 Lisa 8 0.7
456 Ralph 8 0.3

* Is name a key of User?
* Yes? Seems reasonable for this instance
* No! User names are not unique in general

* Key declarations are part of the schema



More examples of keys

Member
* Only uid? ?iﬁn
. ps
* No, because of repeated entries 123 ooy
~
i
-
. 456 gov
° Only gICP = (:p?’
* No, again due to repeated entries 256  gov

* Use both! {uid, gid}

=" A key can contain multiple attributes!



More examples of keys

* Address (street address, city, province, zip)
* Key 1: {street_address, city, province}
* Key 2: {street address, zip}

. a candidate key in the
schema declaration

all its attributes
* E.g., Address (street_address, city, province, zip)




Use of keys

* More constraints on data, fewer mistakes

* Look up arow by its key value
* Many selection conditions are “key = value”

* “Pointers” to other rows (often across tables)



“Pointers” to other rows

* Foreign key: primary key of one relation appearing
as attribute of another relation

Group

" A Book Club

gov Student Government

12f Milhouse 10 0.2

dps Dead Putting Society
Lisa 8 0.7

Ralph 8 0.3

Member E g_

142
123 gov

857 abc
857 gov
456 abc

456 gov

19



20

“Pointers” to other rows

* Referential integrity: A tuple with a non-null value
for a foreign key must match the primary key value
of a tuple in the referenced relation

“Member ==
142 dps
Group
123 gov
. -_ 57 on (D)

A Book Club 857 gov

gov Student Government 456 abc

dps Dead Putting Society 456 gov

Referential integrity violation!



Outline

* Part 1: Relational data model

* Data model

* Database schema

* Integrity constraints (keys)

* Languages
* Relational algebra (focus in this lecture)
* SQL (next 6 lectures)
* Relational calculus (textbook, Ch. 27)

* Part 2: Relational algebra

21



22

Relational algebra

* Alanguage for querying relational data based on
“operators”

* Not used in commercial DBMSs (SQL)

Output or
intermediate result

I . . - I . tables are transient
(" helor
Creod)~




Relational algebra

operators:
Selection
Projection
Cross product
Union
Difference
Renaming

* Additional, operators:
* Join, Natural join, Intersection, etc.

* Compose operators to make complex queries
* Division



24

Core operator 1: Selection o
* Example query: Users with popularity higher than 0.5

O-pop>0.5User

Bart Bart 10

123 Milhouse 10 0.2 857 Lisa 8 0.7
0b0p>0:
857 Lisa 8 0.7

456 Ralph 8 0.3



Core operator 1: Selection

* Input: a table R

* Notation:
* piscalled a (or )

* Purpose: filter rows according to some criteria

* Output: same columns as R, but only rows of R that
satisfy p



More on selection

* Selection condition can include any column of R,
constants, comparison (=, #, <, <, >, = etc.) and
Boolean connectives (A: and, V: or, —=: not)

* Example: users with popularity at least 0.9 and age
under 10 or above 12
o User

 You must be able to evaluate the condition over
of the input table!

* Example: the most popular user

\
o User \NRONG '



Core operator 2: Projection i
* Example: IDs and names of all users

nuid,name User

uid | name ___| age | pop uid | name ____
142 10 0.9

Bart 142 Bart

123 Milhouse 10 0.2 w 123 Milhouse
857 Lisa 8 0.7 857 Lisa

456 Ralph 8 0.3 456 Ralph

27



Core operator 2: Projection

* Input: a table R

e Notation: 7, R
e L isalist of columnsinR

* Purpose: output chosen columns

* Output: “same” rows, but only the columnsin L



More on projection

* Duplicate output rows are removed (by definition)
* Example: user ages

Tage User
uid | name | age | pop _ age
142 Bart 10 0.9 10

123 Milhouse 10 02 -
857 Lisa 8 0.7 8

456  Ralph 8 03 N



Core operator 3: Cross product X

UserXMember

123 Milhouse 10
857 Lisa 8 0.7

L7

rose 123

123 Milhouse 10 0.2 857 abc
123 Milhouse 10 0.2 857 gov
857 Lisa 8 0.7 123 gov
857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov



Core operator 3: Cross product

* Input: two tables R and S
* Notation: RxS
* Purpose: pairs rows from two tables

* Output: foreachrow rin R and each s in S, output
a row rs (concatenation of r and s)



A note on column ordering

* Ordering of columns is unimportant as far as

contents are concerned

32

123
123
123
857
857
857

* So cross product is

Milhouse 10

Milhouse 10 0.2
Milhouse 10 0.2
Lisa 8 0.7
Lisa 8 0.7
Lisa 8 0.7

123
857
857
123
857
857

abc
gov
gov
abc

gov

123
857
857
123
857
857

abc
gov
gov
abc

gov

, i.e., forany R and

123
123
857
857
857

Milhouse 10
Milhouse 10
Milhouse 10
Lisa 8
Lisa 8
Lisa 8

S, RXS = SXR (up to the ordering of columns)

0.2
0.2
0.7
0.7
0.7



Derived operator 1: Join x

* Info about users, plus IDs of their groups
User Dquer uid=Member.uid Member mm

o e L L

123 Milhouse 10 857 abc
857 Lisa 8 0.7 857 gov

123 Milhouse 123 gov
123 Milhouse 10 0.2 857 abc
123 Milhouse 10 0.2 857 gov
857 Lisa 8 0.7 123 gov
857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

33



Derived operator 1: Join X

* Info about users, plus IDs of their groups
User Nyuseruwid=Member.uid Member

123 gov

123 Milhouse 10 0.2 857 abc
857 Lisa 8 0.7 857 gov

0.7 857 gov



Derived operator 1: Join X

* Info about users, plus IDs of their groups
User D<]lllse'r.uid:Membe'r.uid Member

123 gov
123 Milhouse 10 0.2 857 abc
857 Lisa 8 0.7 857 gov
0 User.uid=
Member.uid
\/
Prefix a column reference
with table name and “.” to 123 Milhouse 10 0.2 123 gov

disambiguate identically named
columns from different tables

857 Lisa
857 Lisa



Derived operator 1: Join

* Input: two tables R and S

* Notation: R S
* piscalled a (or )

* Purpose: relate rows from two tables according to
some criteria

* OQutput: foreachrow rin R and eachrow s in S,
output arow rs if r and s satisfy p

e Shorthand for
* (A.k.a. )



Derived operator 2: Natural join

User X\ Member

= (User X Useruid= Member)
Member.uid

0.2 123 gov

123 Milhouse 10 .
857 Lisa 8 0.7 857 abc
857 gov




Derived operator 2: Natural join

* Input: two tables R and S
* Notation: R = §

* Purpose: relate rows from two tables, and
* Enforce equality between identically named columns

e Shorthand for , where

* p equates each pair of columns commonto R and §

* L is the union of column names from R and S (with
duplicate columns removed)



Post-Lecture: Join v.s. Natural join

*JointR >, §
* pisthe join condition (with possible comparisons)
* Output table contains all column names from R and S
(without duplicate columns removed)
* Natural Join: R = §
* Match all pairs of common columns between R and §

* Output table contains the union of column names from
R and S (with duplicate columns removed)

* What is the joining condition?m
* R(A,B, C) NRr.c<sD S(A,B,D)

¢ R(A, B, C) NR.CS SDAR.A=S.A S(A, B, D) R.C <S.D and
* R(A,B,C) = S(A,B,D) RAZSA and R.A=5.A

R.B=S.B

39



Core operator 4: Union
e Input: two tables R and S uid | gid Wl uid | gid

123 gov 123 gov
901 edf 857 abc
e Notation: R U S \ /
e R and S must have identical schema @
* Output: l
e Has the same schemaasR and S
e Contains all rows in R and all rows in mm
S (with duplicate rows removed) 123 gz"
857 abc

901 edf



41

Core operator 5: Difference

e Input: two tables R and S uid | gid Wl uid | gid
123 gov 123 gov
901 edf 857 abc
e Notation: R — S \ /
* R and S must have identical schema @
* Output: l
e Has the same schemaas R and S

e Contains allrows in R that are notin S mmf
901 ed



Derived operator 3: Intersection

* Input: two tables R and S

e Notation: RN S
e R and S must have identical schema

* Output:
e Has the same schemaasR and S
e Contains all rows that arein both R and S

 Shorthand forR — (R — S)

. Find tuples in R
* Also equivalentto S — (S — R) - nt;tpi:zm
« And equivalent to R x S (why?) 2 REMOVEEROSE

tuples from R

42



43

Core operator 6: Renaming

* Input: atable R(44,4,, ..., A;)
* Notation: ps R, p(y, xRy, OF Py ur R

* Output: a table with the same rows as R, but called
columns differently

Memberi
Member id | gid
R — (Puember, Membeny — =, =
123 gov 857 abc

857 abc
Member

( P(uid— uid,,gid— gidl)Membe’ —>
gov
857 abc




Core operator 6: Renaming

* As with all other relational operators, it doesn’t
modify the database
* Think of the renamed table as a copy of the original

* Used to
* Create identical column names for natural joins
* Example: R(rid, ...), S(sid, ....)

*R S = (Peria—»iayR) ™ (Psia—iaS)
* Avoid confusion caused by identical column name



Summary of operators

Core Operators

| A R Note: use
>election: 9p these operators for
Projection: ;R assignments &
Cross product: RXS exams

Difference: R — S

1.

2

3.

4. Union:RUS
5

6. Renaming: ps(4, 41 4,54}, )R
Derived Operators

1. Join:R ™, §

2. Naturaljoin:R < S

3. Intersection:R NS



User (uid int, name string, age int, pop float)

Exa m p I e Group (gid string, name string)

Member (uid int, gid string)

» All groups (ids) that Lisa belongs to



User (uid int, name string, age int, pop float)

Exa m p I e Group@ string, name string)

Member (uid int, gid string)

* All groups (ids) that Lisa (a user’s name) belongs to
Writing a query bottom-up:

mm-m
857 Lisa
Who’s Lisa? O'name="Lisa" Member
User uid | gid |
123
mm-m —
123 Milhouse 10
857 gov

857 Lisa 8 0.7

47



User (uid int, name string, age int, pop float)

Exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* All groups (ids) that Lisa belongs to
Writing a query bottom-up:

id | name | age | pop | gid_

857 Lisa 8 0.7 abc
857 Lisa 8 0.7 gov

MUser.uid=Member.uid

raEmmEEEm - Member
857 Lisa 8 0.7 mm

WhO’S Lisa? O-nameT"LiSa" 123 gov
857 abc

USBT' 857 gov

48



Exa m p I e Group (gid string, name string)

Member (uid int, gid string)

User (uid int, name string, age int, pop float)

* All groups (ids) that Lisa belongs to

Writing a query bottom-up: | gid |

n .
Lisa’s groups *7 td abc
gov

id | name | age | pop | gid_

857 Lisa 8 0.7 abc
857 Lisa 8 0.7 gov

X User.uid=Member.uid

raEmmEEEm - Member
857 Lisa 8 0.7 mm

WhO’S Lisa? O-nameT"LiSa" 123 gov
857 abc

USBT' 857 gov

49



User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

* All groups (ids) that Lisa belongs to

(O-name="Lisa" User)
"9\ My ser 4 Memb
User.uid=Member.uid MEMDET

ngid((o-namez"Lisa" USBT) X Membe'l”)

7TgidO-nanfte=“Lisa” A User.uid=Member.uid UserXMember



Take home exercise

* Names of users in Lisa’s group



Summary

* Part 1: Relational data model
* Data model
* Database schema
* Integrity constraints ( )
 Languages (relational algebra, relational calculus, SQL)

* Part 2: Relational algebra - basic language
* Core operators & derived operators

* What’s next?
* More example queries in relational algebra
* Relational calculus (optional)
« SQL (basic)



