
Lecture 3:
Relational Model

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

• Assignment 1 released on Learn
• Due May 29

• Milestone 0 (Team up) for project
• Due May 22
• See Piazza: how to enroll in a project group on LEARN

• Supplementary materials for the course project
released on Learn
• DB2 Sample Application
• MySQL Sample Application

2

Outline

• More examples of relational algebra query

• Monotone operators

• Relational calculus (optional)

3

(Recap) Relational data model

• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a unique name and a domain (or type)
• The domains are required to be atomic

• Each relation contains a set of tuples (or rows)
• Each tuple has a value for each attribute of the relation
• Duplicate tuples are not allowed

FSimplicity is a virtue!

4

Single, indivisible
piece of information

(Recap) Integrity constraints

• Key (Candidate key)
• A set of attributes that uniquely

identify a row, and that is also minimal
• A key can contain multiple attributes
• A relation can have multiple keys

• Primary key
• a designated candidate key in the

schema declaration
• underline all attributes

• Foreign key
• primary key of one relation appearing

as an attribute of another relation

5

uid name age pop

857 Lisa 8 0.7

… … … …

gid name

dps Dead Putting Society

… …

uid gid

857 dps

… …

User

Group

Member

(Recap) RA operators
Core Operators
1. Selection: 𝜎!𝑅
2. Projection: 𝜋"𝑅
3. Cross product: 𝑅×𝑆
4. Union: 𝑅 ∪ 𝑆
5. Difference: 𝑅 − 𝑆
6. Renaming: 𝜌# $!→$!" ,$#→$#" ,… 𝑅

Derived Operators
1. Join: 𝑅 ⋈! 𝑆
2. Natural join: 𝑅 ⋈ 𝑆
3. Intersection: 𝑅 ∩ 𝑆

6

(Recap) Example

• All groups (ids) that Lisa (a user’s name) belongs to

7

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

(Recap) Example

• All groups (ids) that Lisa (a user’s name) belongs to

8

𝑀𝑒𝑚𝑏𝑒𝑟

⋈

𝜋!"#Lisa’s groups

𝜎$%&'("*"+%"
𝑈𝑠𝑒𝑟

Who’s Lisa?

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

uid gid

123 gov

857 abc

857 gov

… …

uid name age pop

857 Lisa 8 0.7

uid name age pop gid

857 Lisa 8 0.7 abc

857 Lisa 8 0.7 gov

gid

abc

govWriting a query in
a bottom-up way

(Recap) Example

• All groups (ids) that Lisa (a user’s name) belongs to

9

𝑀𝑒𝑚𝑏𝑒𝑟

⋈

𝜋!"#

𝜎$%&'("*"+%"
𝑈𝑠𝑒𝑟

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

𝜋!"# 	 ⋈	𝜎$%&'("*"+%"	𝑈𝑠𝑒𝑟 𝑀𝑒𝑚𝑏𝑒𝑟

Putting an expression
tree back to a query

More example

• All groups (ids) that Lisa (a user’s name) belongs to

10

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

names?

𝑀𝑒𝑚𝑏𝑒𝑟
⋈

𝜋!"#Lisa’s groups

𝑈𝑠𝑒𝑟
𝜎$%&'("*"+%"

Who’s Lisa?

𝐺𝑟𝑜𝑢𝑝
⋈

𝜋$%&'Group names

gid name

uid name age pop

uid name age pop gid

gid

Tracking attributes in
intermediate tables

More example

• All group names that Lisa belongs to

11

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

𝑀𝑒𝑚𝑏𝑒𝑟
⋈

𝜋!"#

𝑈𝑠𝑒𝑟
𝜎$%&'("*"+%"

𝐺𝑟𝑜𝑢𝑝
⋈

𝜋$%&'
𝜋!"#$ 𝜋%&' 𝜎!"#$("*&+""𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟 ⋈ 𝐺𝑟𝑜𝑢𝑝

More example

• Names of users in Lisa’s groups

12

Users in
Lisa’s groups 𝑈𝑠𝑒𝑟

⋈

𝜋$%&'Their names

𝑀𝑒𝑚𝑏𝑒𝑟

⋈

𝜋,"#

𝑀𝑒𝑚𝑏𝑒𝑟
⋈

𝜋!"#Lisa’s groups

𝑈𝑠𝑒𝑟
𝜎$%&'("*"+%"

Who’s Lisa?

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

More example

• IDs of groups that Lisa doesn’t belong to

13

Group IDs that Lisa belongs toAll group IDs
−

𝜋!"#

𝐺𝑟𝑜𝑢𝑝

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

𝑀𝑒𝑚𝑏𝑒𝑟
⋈

𝜋!"#

𝑈𝑠𝑒𝑟
𝜎$%&'("*"+%"

𝜋%&'𝐺𝑟𝑜𝑢𝑝 − 𝜋%&' 𝜎!"#$("*&+""𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟

More example

• IDs of users who belong to at least two groups

𝜋,&' 𝑀𝑒𝑚𝑏𝑒𝑟 ⋈-$#.$/.,&'(-$#.$/.,&'	∧
-$#.$/.%&'3-$#.$/.%&'

𝑀𝑒𝑚𝑏𝑒𝑟

• Because it cannot distinguish two Member tables

FRenaming can be used to avoid confusion caused
by identical column name!

14

WRONG!

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)ç

More example
15

𝜌 ,"#→,"#(,!"#→!"#(𝜌 ,"#→,"#),!"#→!"#)

𝑀𝑒𝑚𝑏𝑒𝑟 𝑀𝑒𝑚𝑏𝑒𝑟

⋈,"#((,"#)	∧	!"#(1!"#)

𝜋,"#(

• IDs of users who belong to at least two groups

uid1 gid1 uid2 gid2

uid1 gid1 uid2 gid2

𝜋*+,- 𝜌 *+,→*+,-
.+,→.+,- 	

𝑀𝑒𝑚𝑏𝑒𝑟 ⋈*+,-0*+,1	∧	
.+,-3.+,1	

𝜌 *+,→*+,1
.+,→.+,1 	

𝑀𝑒𝑚𝑏𝑒𝑟

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)ç

More example
16

𝜌2'&3'45 𝜌2'&3'46

𝑀𝑒𝑚𝑏𝑒𝑟 𝑀𝑒𝑚𝑏𝑒𝑟

⋈ 2'&3'45.,"#	(2'&3'46.,"#	
∧	2'&3'45.!"#12'&3'46.!"#	

𝜋2'&3'45.,"#	

• IDs of users who belong to at least two groups

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)ç

More example
17

𝜌 ,"#→,"#(,!"#→!"#(𝜌 ,"#→,"#),!"#→!"#)

𝑀𝑒𝑚𝑏𝑒𝑟 𝑀𝑒𝑚𝑏𝑒𝑟

⋈,"#(1,"#)	∧	!"#((!"#)

𝜋!"#(

• IDs of groups that have at least two users

uid1 gid1 uid2 gid2

uid1 gid1 uid2 gid2

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)ç

Post-lecture

• Write a relational algebra query only using:
• Input tables
• Relational operators (core & derived)
• Constants in natural language queries (e.g. “𝐿𝑖𝑠𝑎”)

• Should not depend on the database content

18

19

• IDs of users who belong to at least three groups

• IDs of users who belong to exactly two groups

Take home exercise

More example

• Who are the most popular users?

𝜎!"!	$	%&%'(!"!)*	+,%'	𝑈𝑠𝑒𝑟

• Because it cannot be evaluated over a single row

20

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

WRONG!

More example

• Who are the most popular users?
• Who does NOT have the highest pop rating?
• Whose pop is lower than somebody else’s?

21

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

More example

• Who are the most popular users?
• Who does NOT have the highest pop rating?
• Whose pop is lower than somebody else’s?

22

𝜋,"#

𝑈𝑠𝑒𝑟

−

𝑈𝑠𝑒𝑟𝑈𝑠𝑒𝑟

𝜌8+'45 𝜌8+'46

⋈8+'45.9:9;8+'46.9:9

𝜋8+'4(.,"#

When (and why) is “−” needed?

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

More example

• Who joins all the groups that Lisa joins?
• All groups (ids) that Lisa belongs to Suppose as S(gid)

23

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

𝑀𝑒𝑚𝑏𝑒𝑟

⋈

𝜋!"#

𝜎$%&'("*"+%"
𝑈𝑠𝑒𝑟

More example

• Who joins all the groups that Lisa joins?
• All groups (ids) that Lisa belongs to Suppose as S(gid)
• Who joins all groups in S?
• Who does not join some group in S?

24

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

S𝜋,"#
𝑀𝑒𝑚𝑏𝑒𝑟

×
−

𝑀𝑒𝑚𝑏𝑒𝑟

𝜋,"#𝜋,"#

𝑀𝑒𝑚𝑏𝑒𝑟

− When (and why)
is “−” needed?

Composite operator: Division

• Input: a table 𝑅 𝐴, 𝐵 , 𝑆(𝐴)
• Notation: 𝑅 ÷ 𝑆
• Output:
• A relation defined on 𝐵 (attributes in 𝑅 but not in 𝑆)
• A tuple 𝑏 is an output if

• for every tuple 𝑎 in 𝑆, 𝑎, 𝑏 is a tuple in 𝑅
• Shorthand for 𝜋4𝑅 − 𝜋4 (𝜋4𝑅)×𝑆 − 𝑅
• Example: 𝑀𝑒𝑚𝑏𝑒𝑟 𝑢𝑖𝑑, 𝑔𝑖𝑑 ÷ 𝑆 𝑔𝑖𝑑

25

𝜋,&'𝑀𝑒𝑚𝑏𝑒𝑟 − 𝜋,&'(𝜋,&'𝑀𝑒𝑚𝑏𝑒𝑟 ×𝑆 −𝑀𝑒𝑚𝑏𝑒𝑟)

Non-monotone operators

• If some old output rows may become invalid, and need to
be removed à the operator is non-monotone

• Example: difference operator 𝑅 − 𝑆

26

RelOp
Add more rows

to the input...

What happens
to the output?

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

uid gid

857 abc

857 abc

This old row
becomes invalid
because the new
row added to S

𝑆𝑅

−

Non-monotone operators

• If some old output rows may become invalid, and need to
be removed à the operator is non-monotone
• Otherwise (old output rows always remain “correct”) à the

operator is monotone

27

RelOp
Add more rows

to the input...

What happens
to the output?

189 abc

189 abc

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

uid gid

857 abc

𝑆𝑅

−

This old row is
always valid no

matter what
rows are added

to R

Classification of relational operators

• Selection: 𝜎5𝑅
• Projection: 𝜋*𝑅
• Cross product: 𝑅×𝑆
• Join: 𝑅 ⋈5 𝑆
• Natural join: 𝑅 ⋈ 𝑆
• Union: 𝑅 ∪ 𝑆
• Difference: 𝑅 − 𝑆
• Intersection: 𝑅 ∩ 𝑆

28

Monotone
Monotone
Monotone
Monotone
Monotone
Monotone
Monotone w.r.t. 𝑅; non-monotone w.r.t. 𝑆

Monotone

Composition of operators

• The composition of monotone operators produces
a monotone query
• Old output rows remain “correct” when more rows are

added to the input

• The composition of monotone and non-monotone
operators could produce a monotone or non-
monotone query
• 𝑅 – (𝑅 − 𝑆) = 𝑅 ∩ 𝑆 is monotone w.r.t. both 𝑅 and 𝑆
• 𝜋!𝑅 − 𝜋! (𝜋!𝑅)×𝑆 − 𝑅 is non-monotone w.r.t. 𝑆 and

monotone w.r.t. 𝑅

29

Why is “−” needed?

• Is the “highest” query monotone?
• Current highest pop is 0.9
• Add another row with pop 0.91
• Old answer is invalidated

• Is the “division” query monotone?
• Suppose Lisa only joins gov; all users belonging to gov

are valid
• Add another row with Lisa joining dps
• Users who only joins gov but not dps are invalidated

FSo non-monotone queries must use difference!

30

No!

No!

Why do we need core operator 𝑋?
• Difference
• The only non-monotone operator

• Projection
• The only operator that removes columns

• Cross product
• The only operator that adds columns

• Union
• The only operator that adds rows (w/o changing schema)

• Selection
• The only operator that removes rows (w/o changing

schema)
• Renaming
• The only operator that changes the name of columns

31

Extensions of relational algebra

• Duplicate handling (“bag semantics”)
• Grouping and aggregation

FAll these will come up when we talk about SQL
FBut for now we will stick to standard relational

algebra without these extensions

32

Relational calculus (Optional)

• Relational Algebra: procedural language
• An algebraic formalism in which queries are expressed

by applying a sequence of operations to relations

• Relational Calculus: declarative language
• A logical formalism in which queries are expressed as

formulas of first-order logic

• Codd’s Theorem: Relational Algebra and Relational
Calculus are essentially equivalent in terms of
expressive power.

33

Relational calculus (Optional)

• Use first-order logic (FOL) formulae to specify
properties of the query answer

• Example: Who are the most popular?
• 𝑢. 𝑢𝑖𝑑	 𝑢 ∈ 𝑈𝑠𝑒𝑟 ∧
	 	 ¬ ∃𝑢" ∈ 𝑈𝑠𝑒𝑟: 𝑢. 𝑝𝑜𝑝 < 𝑢". 𝑝𝑜𝑝 }, or

• 𝑢. 𝑢𝑖𝑑	 𝑢 ∈ 𝑈𝑠𝑒𝑟 ∧
 ∀𝑢" ∈ 𝑈𝑠𝑒𝑟: 𝑢. 𝑝𝑜𝑝 ≥ 𝑢". 𝑝𝑜𝑝 }

34

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Relational calculus (Optional)
• Relational algebra = “safe” relational calculus
• Every query expressible as a safe relational calculus

query is also expressible as a relational algebra query
• And vice versa

• Example of an “unsafe” relational calculus query
• 𝑢. 𝑛𝑎𝑚𝑒	 ¬ 𝑢 ∈ 𝑈𝑠𝑒𝑟 à users not in the User table
• Cannot evaluate it just by looking at the database

• A query is safe if, for all database instances
conforming to the schema, the query result can be
computed using only constants appearing in the
database instance or in the query itself.

35

Limits of relational algebra (Optional)

• Relational algebra has no recursion
• Example: given relation Friend(uid1, uid2), who can Bart

reach in his social network with any number of hops?
• Writing this query in r.a. is impossible!

• So it is not as powerful as general-purpose languages

• But why not?
• Optimization becomes undecidable
FSimplicity is empowering
• Besides, you can always implement it at the application

level, and recursion is added to SQL nevertheless!

36

Applications of relational algebra
(Optional)
• What are the tables or relations?
• How to express the query in relational algebra?

37

How to list all triangles in a
directed graph?

How to list all distinct pairs of
users sharing some common

friends?

How to partition users so that
no neighbors fall into the

same group?

Graph analytics (Optional)
38

A B

Alice Bob

Alice Cathy

Bob David

David Alice

… …

Edge1 Edge2 Edge3
B C

Alice Bob

Alice Cathy

Bob David

David Alice

… …

C A

Alice Bob

Alice Cathy

Bob David

David Alice

… …

A B C

Alice Bob David

… … …

Edge1(𝐴, 𝐵) ⋈ Edge2 𝐵, 𝐶 ⋈ Edge3 (𝐶, 𝐴)

Edge
source destination

Alice Bob

Alice Cathy

Bob David

David Alice

… …

Matrix multiplication (Optional)
39

0 0
1 0

0 1
1 0

1 0
0 1

0 0
0 0

⋅
1 1
0 1

0 0
0 1

0 1
0 0

0 0
1 0

=
0 0
1 1

1 0
0 0

1 1
0 1

0 0
0 1

B

A B

C

A

C

𝑅! 𝑅"
A B
1 4
2 1
2 3
3 1
4 2

B C
1 1
1 2
2 2
2 4
3 2
4 3

A C
1 3
2 1
2 2
3 1
3 2
4 2
4 4

𝑅#

𝜋7,9⋈
A B C
1 4 3
2 1 1
2 1 2
2 3 2
3 1 1
3 1 2
4 2 2
4 2 4

𝑅! ⋈ 𝑅"

Summary

• Part 1: Relational data model
• Data model
• Database schema
• Integrity constraints (keys)
• Languages

• relational algebra
• relational calculus (optional)

• Part 2: Relational algebra – basic language
• Core & derived operators
• Write a relational algebra query
• Applications to other domains (optional)

40

What’s next?

• Lecture 4: SQL

41

