Lecture 3:
Relational Model

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

* Assignment 1 released on Learn
* Due

* Milestone o0 (Team up) for project
* Due
* See Piazza: how to enroll in a project group on LEARN

* Supplementary materials for the course project
released on Learn

* DB2 Sample Application
* MySQL Sample Application

Outline

* More examples of relational algebra query

* Monotone operators

* Relational calculus (optional)

(Recap) Relational data model

* A database is a collection of relations (or tables)
* Each relation has a set of attributes (or columns)

* Each attribute has a unique name and a domain (or type)
* The domains are required to be atomic

Single, indivisible

piece of information

* Each relation contains a set of tuples (or rows)
* Each tuple has a value for each attribute of the relation
* Duplicate tuples are not allowed

= Simplicity is a virtue!

(Recap) Integrity constraints

* Key (Candidate key) User
* A set of attributes that uniquely mmm

identify a row, and that is also minimal 87 s
* A key can contain multiple attributes
* Arelation can have multiple keys Group

° Prlmary key dps Dead Putting Society
* a designated candidate key in the

schema declaration

 underline all attributes Member
- uid | gid
* Foreign key — -

* primary key of one relation appearing
as an attribute of another relation

(Recap) RA operators

Core Operators
1. Selection: o, R

2. Projection: 7, R

3. Cross product: RXS

4. Union:RUS

5. Difference:R — S

6. Renaming: ps(4, 41 4,54},)R

Derived Operators

1. Join:R ™, §

2. Naturaljoin:R < S
3. Intersection:R NS

User (uid int, name string, age int, pop float)

(R e Ca p) Exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* All groups (ids) that Lisa (a user’s name) belongs to

User (uid int, name string, age int, pop float)

(R e Ca p) Exa m p l e Group (gid string, name string)

Member (uid int, gid string)

* All groups (ids) that Lisa (a user’s name) belongs to

Lisa’s groups Tyid ?
Writing a query in | gov
a bottom-up way | uid | name | age | pop | gid |
857 Lisa 8 0.7 abc
857 Lisa 8 0.7 gov
X

mREmEarm Member
857 Lisa 8 0.7 mm

Who’s Lisa? Uname|="Lisa" Lo | e
857 abc

USBT' 857 gov

User (uid int, name string, age int, pop float)

(R e Ca p) Exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* All groups (ids) that Lisa (a user’s name) belongs to
Mgid (Opame="Lisa" User) < Member)

7Tgid
|

X

— T~

Oname="Lisa" Member

User

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* All groups{ids) that Lisa (a user’s name) belongs to
names:

Group names
P Thame

Tracking attributes in

intermediate tables Sl sid | name
.) / \
Lisa’s groups Tgid P2 GTOUp
|
Who's Lisa? O uid | name | age | pop | gid

/ \
uid | name | age | pop | O-name|="Lisa" Member

User

10

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)
* All group names that Lisa belongs to

(ngid((aname=v- LisgrUser) x M ember)

— T
T[gid
X
Oname =L§l M\ember
U Sler

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* Names of users in Lisa’s groups
Their names

|
Users in / \

Lisa’s groups
|

Lisa’s groups 71 g{ T~

|
Who’s Lisa? _— X ~_

Oname="Lisa" Member
|
User

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* IDs of groups that Lisa doesn’t belong to

All ng QIDS that Lisa belongs to

|
Group - X ~__
Uname|="Lisa" Member
User

(ﬂgid((%ame:"Lisa"US@T) X Member))

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)¢

* IDs of users who belong to

TTy,id (Member Ny ember.uid=Member.uid A Member)
Member.gid+Member.gid

* Because it cannot distinguish two Member tables

15

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)¢

* IDs of users who belong to at least two groups

T[u id 1
| o g Lz gz

uid{=uld, A gid{#gid,

P(uid>uid,,gid—gid,) P(uid>uid,,gid—gid,)

X

Member Member

Tyid1 P(uid—midl) Member ™yidq1=uid2 A ,O(uid—>uid2) Member
gid—-gid1l gidl+gid?2 gid—gid?2

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)¢

* IDs of users who belong to

M emberiuid

X Memberiuid =Member2.uid

AN Memberl.gid#Member2.gid
/ \

PMemberi PMember2

Member Member

17

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)¢

* IDs of groups that have at least two users

Ngia,
uids | gids | uidz | gid2

utdq#utd, A gid1=g1td,

P(uid>uid,,gid—gid,) P(uid>uid,,gid—gid,)

X

Member Member

* Write a relational algebra query only using:
* Input tables
* Relational operators (core & derived)
* Constants in natural language queries (e.g. “Lisa”)

* Should not depend on the database content

Take home exercise

* IDs of users who belong to

* IDs of users who belong to

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* Who are the most popular users?

\
o User \NRONG'

* Because it cannot be evaluated over a single row

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* Who are the most popular users?
* Who does NOT have the highest pop rating?
* Whose pop is lower than somebody else’s?

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* Who are the most popular users?
* Who does NOT have the highest pop rating?
* Whose pop is lower than somebody else’s?

uld

T[Userl uid

USQT MUserl pop<User2.pop
PuUseri PuUser2

User User

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* Who joins all the groups that Lisa joins?
* All groups (ids) that Lisa belongs to

7Tgid
|
X
/ \
Uname|="Lisa" Member
User

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* Who joins all the groups that Lisa joins?
* All groups (ids) that Lisa belongs to
* Who joins all groups in S?
* Who does not join some group in S?

/ N \
TTyid TTyuid

Member / ~_
Member
/ N\

T[lltid

Member

Composite operator: Division

* Input: atable R(4,B),S(A)
* Notation: R + §

* Output:
* Arelation defined on B (attributes in R but not in S)
* Atuple b is an output if

 Shorthand forrgR — g ((mgR)XS — R)
» Example: Member (uid, gid) + S(gid)

m,gMember — ;4 ((1,;sMember) XS — Member)

Non-monotone operators

N N .
- N I .
— What happens
Add more rows _____ to the output?
to the input... "™

* If some old output rows may become invalid, and need to
be removed =» the operator is non-monotone

* Example: difference operatorR — §

This old row
mm @mm — mm becomes invalid
—857—alc—

123 gov 123 gov because the new
857 abc 901 edf row added to S

(557 | abe
R S

26

Non-monotone operators

N N I .
- N N .
—> What happens
Add more rows _____ to the output?
N N .

to the input...

* If some old output rows may become invalid, and need to
be removed =» the operator is non-monotone

* Otherwise (old output rows always remain “correct”) = the
operator is monotone

This old row is

uid_| gid_ Qmm MEREER | always valid no

123 gov 123 gov =™ 857 abc matter what

857 abc 901 edf m rows are added

to R
189 | abc
R S

27

Classification of relational operators

* Selection: o, R Monotone
* Projection: T R Monotone
* Cross product: RXS Monotone
* JointR ™, § Monotone
* Naturaljoin:R ®S Monotone
* Union: RU S Monotone
* Difference:R — §

* Intersection:RNS Monotone

Composition of operators

* The composition of monotone operators produces
a monotone query

* Old output rows remain “correct” when more rows are
added to the input

* The composition of monotone and non-monotone
operators could produce a monotone or non-
monotone query

* R—-(R—S)=RnNSismonotone w.r.t. both R and S

* TgR — mg((mgR)XS — R) is non-monotone w.r.t. S and
monotone w.r.t. R

Why is “—"" needed?

* Is the “highest” query monotone?
* Current highest pop is 0.9
* Add another row with pop 0.91
* Old answer is invalidated

* |s the “division” query monotone?

* Suppose Lisa only joins gov; all users belonging to gov
are valid

* Add another row with Lisa joining dps
* Users who only joins gov but not dps are invalidated

Why do we need core operator X?

* Difference
* The only operator
* Projection
* The only operator that
* Cross product
* The only operator that
* Union
* The only operator that

* Selection
* The only operator that

* Renaming
* The only operator that

Extensions of relational algebra

* Duplicate handling (“bag semantics”)
* Grouping and aggregation

= All these will come up when we talk about SQL
“ But for now we will stick to

Relational calculus (Optional)

* Relational Algebra: language
* An algebraic formalism in which queries are expressed
by to relations
* Relational Calculus: language

* Alogical formalism in which queries are expressed as

* Codd’s Theorem: Relational Algebra and Relational
Calculus are essentially equivalent in terms of
expressive power.

Relational calculus (Optional)

* Use first-order logic (FOL) formulae to specify
properties of the query answer

* Example: Who are the most popular?

e {u.uid | u € User A
—(Ju’ € User:u.pop < u'.pop)}, or

e {u.uid | u € User A
(Vu' € User:u.pop = u'.pop)}

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Relational calculus (Optional)

* Relational algebra = “safe” relational calculus

* Every query expressible as a safe relational calculus
query is also expressible as a relational algebra query

* And vice versa

* Example of an * "’ relational calculus query
 {u.name | =(u € User)} = users not in the User table

* A queryis if, for all database instances
conforming to the schema, the query result can be
computed using

or in the query itself.

Limits of relational algebra (Optional)

* Relational algebra has

» Example: given relation Friend(uid1, uid2), who can Bart
reach in his social network with any number of hops?

* Writing this query in r.a. is impossible!
* Soitis not as powerful as general-purpose languages

* But why not?
* Optimization becomes

* Besides, you can always implement it at the application
level, and recursion is added to SQL nevertheless!

37

Applications of relational algebra
(Optional)

* What are the tables or relations?

* How to express the query in relational algebra?

How to list all distinct pairs of
@ users sharing some common
friends?

How to partition users so that
no neighbors fall into the
same group?

Graph analytics (Optlonal)

AI|ce Bob
Alice Cathy
Bob David
David Alice
Edge1 Edgez Edge3
Alice Bob Alice Bob Alice
Alice Cathy Alice Cathy Alice Cathy
Bob David Bob David Bob David
David Alice David Alice David Alice

Edge1(A, B) = Edge2(B, C) ™ Edge3 (C, A)

Alice Bob David

39

Matrix multiplication (Optional)

O O O

O OO

I O

— OO O
(aa]
—|lob o
O o
(]l fan] Aam
ol-- o

—

— N N

N omn g

on <

Summary

* Part 1: Relational data model
* Data model
* Database schema
* Integrity constraints (keys)
* Languages
* relational algebra
* relational calculus (optional)

* Part 2: Relational algebra - basic language
* Core & derived operators

* Applications to other domains (optional)

What’s next?

* Lecture 4: SQL

