Lecture 4:
SQL (Basic)

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcement

* Assignment 1:
* Crowdmark and Marmoset
* Coverage: Lectures1-6
* Overview
* Relational data and relational algebra
* SQL basic

* In Assignment 1, focus on the correctness (not
efficiency) when writing a RA or SQL query

SQL (Structured Query Language)

* Pronounced “S-Q-L” or “sequel”

* SQL became a standard of the American National
Standards Institute (ANSI) in 1986, and of the International
Organization for Standardization (ISO) in 1987

* A brief history
* IBM System R (early 1970s)
ANSI SQL86
ANSI SQL89
ANSI SQL92 (SQL2)
ANSI SQL99 (SQL3)
ANSI SQL 2003 (added OLAP, XML, etc.)
ANSI SQL 2006 (added more XML)
ANSI SQL 2008,

SQL is a standard - BUT

* The standard query language supported by most
DBMS

* Although SQL is an ANSI/ISO standard, there are
different versions of the SQL language

 Support at least the major commands (such
as SELECT, UPDATE, DELETE, INSERT, WHERE) in a
similar manner

* Most DBMS also have their own proprietary extensions
or restrictions in addition to the SQL standard!

What can SQL do?

* SQL can execute queries against a database

* SQL can retrieve data from a database

* SQL caninsert records in a database

* SQL can update records in a database

* SQL can delete records from a database

* SQL can create new databases

* SQL can create new tables in a database

* SQL can enforce constraints in a database

* SQL can create views in a database

* SQL can set permissions on tables, procedures, and views

sQL

* Basic topics:
* Data-definition language (DDL): define/modify schemas,
drop relations

 Data-manipulation language (DML): query data, and
insert/delete/modify tuples

* Integrity constraints: specify constraints that the data
stored in the database must satisfy

* Advanced topics:
* E.g., triggers, views, indexes, programming, recursion

sQL

* Basic topics:
* Data-definition language (DDL): define/modify schemas,
drop relations

User (uid int, name string, age int, pop float)
Group (gid string, name string)

D D L Member (uid int, gid string)

table_ name
(..., column_name column_type, ...);

CREATE TABLE User(uid INT, name VARCHAR(30), age INT, pop
DECIMAL(3,2));

CREATE TABLE Group (gid CHAR(10), name VARCHAR(100));
CREATE TABLE Member (uid INT, gid CHAR(10));

table name;
DROP TABLE User;

DROP TABLE Group;
DROP TABLE Member;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

* Add or modify attributes

ALTER TABLE Member ADD date

ALTER TABLE Member RENAME date TO mdate

ALTER TABLE Member DROP mdate

sQL

e Basics

* Data-definition language (DDL): define/modify schemas,
drop relations

 Data-manipulation language (DML): query data
* SELECT-FROM-WHERE

10

Basic queries for DML: SFW statement

A, Ay, .. A,
R,R,,...,R,
condition;

* Also called an SPJ (select-project-join) query

* Corresponds to ()
relational algebra query:

TTp, As,... Ap (O-condition (Rl ><RZ X XRm))

User (uid int, name string, age int, pop float)

Exa m p I e S Group (gid string, name string)

Member (uid int, gid string)

e List all rows in the User table
SELECT * FROM User;

is a short hand for “all columns”’

* List name of users under 18 (selection, projection)

SELECT name FROM User WHERE age <18;

* When was Lisa born?
SELECT 2025-age FROM User WHERE name = ‘Lisa’;

* SELECT list can contain expressions
* String literals (case sensitive) are enclosed in single

User (uid int, name string, age int, pop float)

M O re e Xa m p I e S Group (gid string, name string)

Member (uid int, gid string)

SELECT name FROM User WHERE age <18 OR age > 30;
SELECT name FROM User WHERE pop > 0.9 AND age < 18;

SELECT age FROM User WHERE NOT pop < 0.9;

SELECT age FROM User WHERE name IN (‘Lisa’, ‘Bart’, ‘Alice’);

SELECT age FROM User WHERE name LIKE ‘%Lisa%’;

* WHERE clause can use (not limited to the following):
* logical connectives ()
specify multiple values

matches a string against a pattern
. matches any sequence characters

User (uid int, name string, age int, pop float)

Exa m p I e : jO i n Group (gid string, name string)

Member (uid int, gid string)

e | st
contains “Lisa”’

SELECT Group.gid, Group.name
FROM User, Member, Group

WHERE User.uid = Member.uid
AND Member.gid = Group.gid
AND;

User (uid int, name string, age int, pop float)

Exa m p I e : jO i n Group (gid string, name string)

Member (uid int, gid string)

* List IDs and names of groups with a user whose
name

SELECT Group.gid, Group.name
FROM User, Member, Group

WHERE User.uid = Member.uid
AND Member.gid = Group.gid
AND User.name LIKE ‘%Lisa%’;

* Okay to omit table_namein table name.column_name if
column_nameis unique

User (uid int, name string, age int, pop float)

Exa m p I e:.rename Group (gid string, name string)

Member (uid int, gid string)

* IDs of all pairs of users that join some common group
* Relational algebra query:

TCom, uid,m,.uid (pmlMember M m,.gid=m,.gid Pm,M ember)
Amquid<m,.uid

* SQL (not exactly due to duplicates):

SELECT m1.uid AS uid1, m2.uid AS uid2

FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid AND m1.uid < m2.uid;

keyword is completely optional

A more complicated example

* Names of all groups that Lisa and Alice are both in

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

* Names of all and Alice are both in

SELECT
FROM User ut, ..., Member m1, ...

WHERE ui.name = ‘Lisa’ AND ...
AND u1.uid = m1.uid AND ...
AND ...;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

* Names of all Lisa and are both in

SELECT
FROM User ut, User u2, Member m1, Member m2, ...

WHERE u1.name = ‘Lisa’ AND u2.name = ‘Alice’
AND u1.uid = m1.uid AND u2.uid=m2.uid
AND ...;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

that Lisa and Alice are

SELECT g.name
FROM User u1, User u2, Member m1, Member m2, Group g

WHERE u1.name = ‘Lisa’ AND u2.name = ‘Alice’
AND u1.uid = m1.uid AND u2.uid=m2.uid
AND m1.gid = g.gid AND m2.gid = g.gid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Why SFW statements?

* Many queries can be written using only

* These queries can be written in a canonical form

SELECT L

FROM Ry, R, ..., R,
WHERE p

* TrasB(R Xp, S) p, (mr7.c0p,T)
but to T[R.A,S.B,T.Co-pl/\pz/\p3 (R XSXT) (Whyj)
* Can be captured by SFW statements

Semantics of SFW

* Foreach t; in Ry:
Foreacht, in R,:

Foreacht,, in R,,:

If condition is true over t, t,, ..., t,,:
Compute and output 44, 4,, ..., A,, as arow

* ty, ty, ..., t,,, are often called

User (uid int, name string, age int, pop float)

I N CI adSsS exe rCiseS Group (gid string, name string)

Member (uid int, gid string)

* List user names whose popularity is b/w 0.5 and 0.9

SELECT name FROM User WHERE pop > 0.5 AND pop < 0.9;

* List the group ids that a user with id 134 belongs to

SELECT gid FROM Member WHERE uid=134;

* List the group ids that Lisa belongs to

SELECT gid

FROM Member m, User u
WHERE u.name=‘Lisa’ AND m.uid=u.uid;

User (uid int, name string, age int, pop float)

I N CI adSsS exe rCiseS Group (gid string, name string)

Member (uid int, gid string)

* List the group names that Lisa belongs to

SELECT g.name

FROM Member m, User u, Group g
WHERE u.name="*Lisa’ AND m.uid=u.uid AND m.gid = g.gid;

* List user ids belonging to at least 2 groups

SELECT m1.uid

FROM Member m1, Member m2
WHERE m1.uid=m2.uid AND m1.gid < m2.gid;

SQL features covered so far

* Data-definition language (DDL): define/modify schemas,
delete relations

* SELECT-FROM-WHERE

User

Set versus bag

142 Bart 10 0.9
123 Milhouse 10 0.2
e Set versus Multi-set 857 Lisa 8 07
456 Ralph 8 0.3
TageUser Set semantics
10 * No duplicates
8
SELECT age Bag semantics
FROM User; 10 * Duplicates allowed
10 * Rows in output = rows in input (w/o where
g clause)

A case for bag semantics

* Efficiency TageUser
* Saves time of eliminating duplicates

SELECT age
FROM User;
* The first query just returns all possible user ages in the
table

* The second query returns the user age distribution

* Which one is more useful?

* Besides, SQL provides the option of set semantics
with keyword

DISTINCT - Forcing set semantics

* IDs of all pairs of users that belong to one group

SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2

WHERE m1.gid = m2.gid
AND m1.uid < m2.uid;

—> Say Lisa and Alice are in both the book club and the
student government, their id pairs will appear twice

* Remove duplicate (uid1, uid2) pairs from the output

SELECT DISTINCT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2

WHERE m1.gid = m2.gid;
AND m1.uid < m2.uid;

Semantics of SFW with DISTINCT

e SELECT Al) AZ)'“)ATL
FROM R{, Ry, ..., R,
WHERE condition,;

* Foreach t; in Ry:
For each t, in R,:

Foreach t,, in R,,:

If condition is true over tq, t,, ..., t,,:
Compute and output 44, 45, ..., A, asarow

SQL set and bag operations

e Set: UNION, EXCEPT, INTERSECT

* Exactly like set U, —, and n in relational algebra
* Duplicates in input tables, if any, are first eliminated
* Duplicates in result are also eliminated

(SELECT * FROM Bucket1)

UNION apple
Buckett Bucket2 (SELECT * FROM Bucket2);
orange
(SELECT * FROM Bucket1)
apple apple EXCEPT
apple orange (SELECT * FROM Bucket2);
orange orange
(SELECT * FROM Bucket1)
INTERSECT

apple

(SELECT * FROM Bucket2); o200

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and n in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

Bucket1 Bucket2 (SELECT * FROM Bucket1)

UNION ALL fruit

(SELECT * FROM Bucket2); apple

apple apple apple

apple orange orange
sum up the

orange orange FWO counts apple

orange
apple: 2 apple: 1
orange:1 orange:2 orange

apple: 3
orange:3

31

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and n in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

SELECT * FROM Bucket1) .
Bucket1 Bucket2 (fruit
EXCEPT ALL | fruit

(SELECT * FROM Bucket2); ~ 2PPle

apple apple apple: 1
apple orange orange:o

orange orange proper-subtract

the two counts
apple: 2 apple: 1
orange:1 orange:2

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and n in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

Bucket1 Bucket2 (SELECT * FROM Bucket1)
INTERSECT ALL apple

(SELECT * FROM Bucket2);

apple apple
apple orange

orange orange take the
minimum of the

apple: 2 apple: 1 two counts
orange:1 orange:2

orange

apple: 1
orange:1

Set versus bag operations

Consider Poke (uid1, uid2, timestamp):
* uid1 poked uid2 at timestamp

Q1:
(SELECT uid1 FROM Poke)

EXCEPT
(SELECT uid2 FROM Poke);

Users who poked others but
never got poked by others

Q2:
(SELECT uid1 FROM Poke)
EXCEPT ALL

(SELECT uid2 FROM Poke);

Users who poked others
more than others poked them

In class exercises

* What is the output of these queries? Member
User 857 dps

123 gov

142 Bart 10 0.9 857 abc

123 Milhouse 10 0.2 857 gov

857 Lisa 8 0.7 456 abc

456 Alice 8 0.3 456 gov

SELECT gid
FROM Member m, User u
WHERE u.name="‘Lisa’ AND u.uid=m.uid

SELECT gid NION ALL
FROM Member m, User u SELECT gid

WHERE u.name="‘Lisa’ AND FROM Member m, User u
u.uid=m.uid WHERE u.name=°‘Alice’ AND u.uid=m.uid

SQL features covered so far

* Data-definition language (DDL): define/modify schemas,
delete relations

* SELECT-FROM-WHERE
* Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

* School servers have db2 installed

* Instructions in db2 tutorial posted as the supplementary
materials with the project description

* Instructions in Assignment 1

* The textbook’s website has an SQLite db that runs
in the browser: https://www.db-
book.com/university-lab-dir/sqgljs.html

37

https://www.db-book.com/university-lab-dir/sqljs.html
https://www.db-book.com/university-lab-dir/sqljs.html

