
Lecture 4:
SQL (Basic)

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcement

• Assignment 1:
• Crowdmark and Marmoset are already open
• Coverage: Lectures 1 – 6 and partially Lecture 7

• Overview
• Relational data and relational algebra
• SQL basic

• In Assignment 1, focus on the correctness (not
efficiency) when writing a RA or SQL query

2

SQL (Structured Query Language)
• Pronounced “S-Q-L” or “sequel”
• SQL became a standard of the American National

Standards Institute (ANSI) in 1986, and of the International
Organization for Standardization (ISO) in 1987
• A brief history

• IBM System R (early 1970s)
• ANSI SQL86
• ANSI SQL89
• ANSI SQL92 (SQL2)
• ANSI SQL99 (SQL3)
• ANSI SQL 2003 (added OLAP, XML, etc.)
• ANSI SQL 2006 (added more XML)
• ANSI SQL 2008,
• …

3

SQL is a standard - BUT

• The standard query language supported by most
DBMS

• Although SQL is an ANSI/ISO standard, there are
different versions of the SQL language
• Support at least the major commands (such

as SELECT, UPDATE, DELETE, INSERT, WHERE) in a
similar manner
• Most DBMS also have their own proprietary extensions

or restrictions in addition to the SQL standard!

4

What can SQL do?
• SQL can execute queries against a database
• SQL can retrieve data from a database
• SQL can insert records in a database
• SQL can update records in a database
• SQL can delete records from a database
• SQL can create new databases
• SQL can create new tables in a database
• SQL can enforce constraints in a database
• SQL can create views in a database
• SQL can set permissions on tables, procedures, and views
• ……

5

SQL

• Basic topics:
• Data-definition language (DDL): define/modify schemas,

drop relations
• Data-manipulation language (DML): query data, and

insert/delete/modify tuples
• Integrity constraints: specify constraints that the data

stored in the database must satisfy

• Advanced topics:
• E.g., triggers, views, indexes, programming, recursion

6

SQL

• Basic topics:
• Data-definition language (DDL): define/modify schemas,

drop relations

7

DDL

• CREATE TABLE table_name
(…, column_name column_type, …);

• DROP TABLE table_name;

8

CREATE TABLE User(uid INT, name VARCHAR(30), age INT, pop
DECIMAL(3,2));
CREATE TABLE Group (gid CHAR(10), name VARCHAR(100));
CREATE TABLE Member (uid INT, gid CHAR(10));

DROP TABLE User;
DROP TABLE Group;
DROP TABLE Member;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

-- everything from -- to the end of line is ignored.
-- SQL is insensitive to white space.
-- SQL is insensitive to case (e.g., ...CREATE... is equivalent to ...create...).
-- semicolon is used at the end of each SQL statement.

Drastic action:
deletes ALL info

about the table, not
just the contents

Post-Lecture

• Add or modify attributes

9

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

ALTER TABLE Member ADD date

ALTER TABLE Member RENAME date TO mdate

ALTER TABLE Member DROP mdate

SQL

• Basics
• Data-definition language (DDL): define/modify schemas,

drop relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE

10

Basic queries for DML: SFW statement

• SELECT 𝐴1, 𝐴2, …, 𝐴𝑛
FROM 𝑅1, 𝑅2, …, 𝑅𝑚
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

• Also called an SPJ (select-project-join) query

• Corresponds to (but not really equivalent to)
relational algebra query:

𝜋%!,%",…,%# 𝜎()*+,-,)* 𝑅.×𝑅/×⋯×𝑅0

11

Examples

• List all rows in the User table

• * is a short hand for “all columns”

• List name of users under 18 (selection, projection)

• When was Lisa born?

• SELECT list can contain expressions
• String literals (case sensitive) are enclosed in single quotes

12

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT * FROM User;

SELECT name FROM User WHERE age <18;

SELECT 2025-age FROM User WHERE name = ‘Lisa’;

More examples

• WHERE clause can use (not limited to the following):
• logical connectives (AND, OR, NOT)
• IN specify multiple values
• LIKE matches a string against a pattern

• % matches any sequence characters
13

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT name FROM User WHERE age <18 OR age > 30;

SELECT name FROM User WHERE pop > 0.9 AND age < 18;

SELECT age FROM User WHERE name IN (‘Lisa’, ‘Bart’, ‘Alice’);

SELECT age FROM User WHERE name LIKE ‘%Lisa%’;

SELECT age FROM User WHERE NOT pop < 0.9;

Example: join

• List IDs and names of groups with a user whose
name contains “Lisa”

14

SELECT Group.gid, Group.name
 FROM User, Member, Group
 WHERE User.uid = Member.uid
 AND Member.gid = Group.gid
 AND ….;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Example: join

• List IDs and names of groups with a user whose
name contains “Lisa”

• Okay to omit table_name in table_name.column_name if
column_name is unique

15

SELECT Group.gid, Group.name
 FROM User, Member, Group
 WHERE User.uid = Member.uid
 AND Member.gid = Group.gid
 AND User.name LIKE ‘%Lisa%’;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Example: rename

• IDs of all pairs of users that join some common group
• Relational algebra query:

𝜋!!.#$%,!".#$% 𝜌!!𝑀𝑒𝑚𝑏𝑒𝑟 ⋈!!.'$%(!".'$%	
∧	!!.#$%+!".#$%

𝜌!"𝑀𝑒𝑚𝑏𝑒𝑟

• SQL (not exactly due to duplicates):

• AS keyword is completely optional

16

SELECT m1.uid AS uid1, m2.uid AS uid2
 FROM Member AS m1, Member AS m2
 WHERE m1.gid = m2.gid AND m1.uid < m2.uid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

m1.uid≠ m2.uid?

two users join two
common groups?

A more complicated example

• Names of all groups that Lisa and Alice are both in

Tip: Write the FROM clause first, then WHERE, and
then SELECT

17

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Alice are both in

18

SELECT
 FROM User u1, …, Member m1, …
 WHERE u1.name = ‘Lisa’ AND …
 AND u1.uid = m1.uid AND …
 AND …;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Alice are both in

19

SELECT
 FROM User u1, User u2, Member m1, Member m2, …
 WHERE u1.name = ‘Lisa’ AND u2.name = ‘Alice’
 AND u1.uid = m1.uid AND u2.uid=m2.uid
 AND …;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Alice are both in

20

SELECT g.name
 FROM User u1, User u2, Member m1, Member m2, Group g
 WHERE u1.name = ‘Lisa’ AND u2.name = ‘Alice’
 AND u1.uid = m1.uid AND u2.uid=m2.uid
 AND m1.gid = g.gid AND m2.gid = g.gid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Why SFW statements?

• Many queries can be written using only selection,
projection, and cross product (or join)

• These queries can be written in a canonical form

𝜋, 𝜎- 𝑅.×⋯×𝑅!

• 𝜋/.0,1.2 𝑅 ⋈-! 𝑆 ⋈-" 𝜋3.4𝜎-#𝑇 	
but equivalent to 𝜋/.0,1.2,3.4𝜎-!∧-"∧-# 𝑅×𝑆×𝑇 	(why?)
• Can be captured by SFW statements

21

SELECT 𝐿	
FROM 𝑅!, 𝑅", … , 𝑅#	
WHERE 𝑝

Semantics of SFW

• SELECT 𝐴., 𝐴/, …, 𝐴*
FROM 𝑅., 𝑅/, …, 𝑅0
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;
• For each 𝑡. in 𝑅.:

 For each 𝑡/ in 𝑅/:
 ⋯⋯
 For each 𝑡0 in 𝑅0:
 If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true over 𝑡., 𝑡/, …, 𝑡0:
 Compute and output 𝐴., 𝐴/, …, 𝐴* as a row
• 𝑡., 𝑡/, …, 𝑡0 are often called tuple variables

22

In class exercises

• List user names whose popularity is b/w 0.5 and 0.9

• List the group ids that a user with id 134 belongs to

• List the group ids that Lisa belongs to

23

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT name FROM User WHERE pop > 0.5 AND pop < 0.9;

SELECT gid FROM Member WHERE uid=134;

SELECT gid
 FROM Member m, User u
 WHERE u.name=‘Lisa’ AND m.uid=u.uid;

In class exercises

• List the group names that Lisa belongs to

• List user ids belonging to at least 2 groups

24

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT g.name
 FROM Member m, User u, Group g
 WHERE u.name=‘Lisa’ AND m.uid=u.uid AND m.gid = g.gid;

SELECT m1.uid
 FROM Member m1, Member m2
 WHERE m1.uid=m2.uid AND m1.gid < m2.gid;

a user joins three
groups?

SQL features covered so far

• Basics
• Data-definition language (DDL): define/modify schemas,

delete relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE
• Set v.s. Bag

25

Set versus bag

26

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

User

𝜋$%&𝑈𝑠𝑒𝑟

SELECT age
FROM User;

age

10

8

…

age

10

10

8

8

…

Set semantics
• No duplicates
• Relational algebra use set semantics

Bag semantics
• Duplicates allowed
• Rows in output = rows in input (w/o where

clause)
• SQL uses bag semantics by default

• Set versus Multi-set

A case for bag semantics

• Efficiency
• Saves time of eliminating duplicates

• Which one is more useful?
• The first query just returns all possible user ages in the

table
• The second query returns the user age distribution

• Besides, SQL provides the option of set semantics
with DISTINCT keyword

27

𝜋$%&𝑈𝑠𝑒𝑟

SELECT age
FROM User;

DISTINCT - Forcing set semantics

• IDs of all pairs of users that belong to one group

à Say Lisa and Alice are in both the book club and the
student government, their id pairs will appear twice

• Remove duplicate (uid1, uid2) pairs from the output

28

SELECT m1.uid AS uid1, m2.uid AS uid2
 FROM Member AS m1, Member AS m2
 WHERE m1.gid = m2.gid
 AND m1.uid < m2.uid;

SELECT DISTINCT m1.uid AS uid1, m2.uid AS uid2
 FROM Member AS m1, Member AS m2
 WHERE m1.gid = m2.gid;
 AND m1.uid < m2.uid;

Semantics of SFW with DISTINCT
• SELECT [DISTINCT] 𝐴1, 𝐴2, …, 𝐴𝑛

FROM 𝑅1, 𝑅2, …, 𝑅𝑚
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;
• For each 𝑡% in 𝑅%:

 For each 𝑡& in 𝑅&:
 ⋯⋯
 For each 𝑡' in 𝑅':
 If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true over 𝑡%, 𝑡&, …, 𝑡':
 Compute and output 𝐴%, 𝐴&, …, 𝐴(as a row
 If DISTINCT is present
 Eliminate duplicate rows in output

29

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra
• Duplicates in input tables, if any, are first eliminated
• Duplicates in result are also eliminated

30

(SELECT * FROM Bucket1)
UNION
(SELECT * FROM Bucket2);

fruit

apple

orange

(SELECT * FROM Bucket1)
EXCEPT
(SELECT * FROM Bucket2);

fruit

(SELECT * FROM Bucket1)
INTERSECT
(SELECT * FROM Bucket2);

fruit

apple

apple

orange

fruit

apple

orange

orange

Bucket1 Bucket2

fruit

apple

orange

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

31

(SELECT * FROM Bucket1)
UNION ALL
(SELECT * FROM Bucket2);

fruit

apple

apple

orange

apple

orange

orange

sum up the
two counts

apple: 2
orange:1

apple: 1
orange:2

apple: 3
orange:3

fruit

apple

apple

orange

fruit

apple

orange

orange

Bucket1 Bucket2

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

32

(SELECT * FROM Bucket1)
EXCEPT ALL
(SELECT * FROM Bucket2);

fruit

apple

proper-subtract
the two counts

apple: 1
orange:0

apple: 2
orange:1

apple: 1
orange:2

fruit

apple

apple

orange

fruit

apple

orange

orange

Bucket1 Bucket2

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

33

(SELECT * FROM Bucket1)
INTERSECT ALL
(SELECT * FROM Bucket2);

fruit

apple

orange

take the
minimum of the

two counts

apple: 1
orange:1

apple: 2
orange:1

apple: 1
orange:2

fruit

apple

apple

orange

fruit

apple

orange

orange

Bucket1 Bucket2

Set versus bag operations

Consider Poke (uid1, uid2, timestamp):
• uid1 poked uid2 at timestamp

How do these two queries differ?

34

Q1:
(SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);

Q2:
(SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);

Users who poked others but
never got poked by others

Users who poked others
more than others poked them

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Alice 8 0.3

In class exercises

35

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User

Member• What is the output of these queries?

SELECT gid
FROM Member m, User u
WHERE u.name=‘Lisa’ AND
u.uid=m.uid

SELECT gid
FROM Member m, User u
WHERE u.name=‘Lisa’ AND u.uid=m.uid
UNION ALL
SELECT gid
FROM Member m, User u
WHERE u.name=‘Alice’ AND u.uid=m.uid

How about
UNION?

SQL features covered so far

• Basics
• Data-definition language (DDL): define/modify schemas,

delete relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE
• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Nested SQL queries

36

Post-Lecture: Practice SQL queries

• School servers have db2 installed
• Instructions in db2 tutorial posted as the supplementary

materials with the project description
• Instructions in Assignment 1

• The textbook’s website has an SQLite db that runs
in the browser: https://www.db-
book.com/university-lab-dir/sqljs.html

37

https://www.db-book.com/university-lab-dir/sqljs.html
https://www.db-book.com/university-lab-dir/sqljs.html

