Lecture 5:
SQL (Basic)

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

* Project Milestone o
* not graded but due on

* Online office hours by IAs for Assignment 1
* See Piazza for Zoom information
* Friday May 23 4pm - 5pm
* Wednesday May 28 4:30 pm — 5:30pm

SQL features covered so far
* Data-definition language (DDL): define/modify
schemas, drop relations

* SELECT-FROM-WHERE statements
* Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

User (uid int, name string, age int, pop float)

Ta b I e Ssu b q ue ri es Group (gid string, name string)

Member (uid int, gid string)

as that can be used in FROM,
set/bag operations, etc.
* Temporarily exist only in the duration of the outer query

* Example: names of

SELECT name
FROM User,
(SELECT DISTINCT m1.uid

FROM Member m1, Member m2
WHERE m1.uid=m2.uid AND m1.gid != m2.gid) AS temp
WHERE User.uid = temp.uid;

W I T H I User (uid int, name string, age int, pop float)
Group (gid string, name string)
C a u S e Member (uid int, gid string)
* Another way of defining a

in which the WITH clause
occurs

* Example: names of

WITH temp AS (SELECT DISTINCT m1.uid
FROM Member m1, Member m2
WHERE m1.uid=m2.uid AND m1.gid != m2.gid)

SELECT name
FROM User, temp
WHERE User.uid = temp.uid;

User (uid int, name string, age int, pop float)

S Ca I al Su b q ue ri es Group (gid string, name string)

Member (uid int, gid string)

* A query that returns can be used as
etc.

* Example: users at the same age as Bart

SELECT *
FROM User

WHERE age = (SELECT age
FROM User
WHERE name = ‘Bart’);

* When can this query go wrong?
e Return more than 1 row
e Return no rows or NULL values

User (uid int, name string, age int, pop float)

I N S u b q u e ri e S Group (gid string, name string)

Member (uid int, gid string)

checks if x is in the result of
subquery
* Trueif x some value in the subquery result

» Example: users that have the same age as (some)
Bart

SELECT *
FROM User

WHERE age IN (SELECT age
FROM User
WHERE name = ‘Bart’);

User (uid int, name string, age int, pop float)

EX I STS Su b q ue ri @S | Group (gid string, name string)

Member (uid int, gid string)

checks if

* True if at least one row is returned by subquery

» Example: users that have the same age as (some)
Bart

SELECT *
FROM User u

WHERE EXISTS (SELECT * FROM User
WHERE name = ‘Bart’
AND age = u.age);

* This happens to be a --a subquery
that references tuple variables in surrounding queries

User (uid int, name string, age int, pop float)

M O re e Xa m p I e Group (gid string, name string)

Member (uid int, gid string)

* IDs of users who join at least two groups

SELECT DISTINCT uid FROM Member m

WHERE EXISTS
(SELECT m1.uid

FROM Member m1
WHERE m.uid = m1.uid AND m.gid != m1.gid)

* How to find which table a column belongs to?
 Start with the immediately surrounding query

* If not found, look in the one surrounding that; repeat if
necessary

User (uid int, name string, age int, pop float)

M O re e Xa m p I e Group (gid string, name string)

Member (uid int, gid string)

* All info of users who join at least two groups

SELECT * FROM User u
WHERE EXISTS

(SELECT * FROM Meémberm1
WHERE m1.uid = u.uid AND EXISTS

(SELECT * FROM Megmber m2
WHERE m2.uid = u.uid AND m2.gid != m1.gid));

* Query optimizer can decorrelate correlated
subqueries into an equivalent join or aggregation

Quantified subqueries

(for all):

* ... WHERE x op (subquery) ...

* True if for all t in the subquery result such that x op tis
true

SELECT * FROM User
WHERE pop >= ALL (SELECT pop FROM User);

(exists):
* ... WHERE x op (subquery) ...

* True if there exists t in the subquery result such that
x op tis true

SELECT * FROM User

WHERE NOT (pop < ANY (SELECT pop FROM User));

More ways to get the most popular

* Which users are the most popular?

SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

SELECT *

FROM User
WHERE NOT (pop < ANY(SELECT pop FROM

e

SELECT * SELECT * FROM User
FROM User u WHERE uid NOT [EXISTS or IN?]
WHERE NOT [EXISTS or IN?] (SELECT ut.uid
(SELECT * FROM User FROM User AS u1, User AS u2
WHERE pop > u.pop); WHERE u1.pop < u2.pop);

Summary of Subqueries

* We have covered:
* Table subqueries
* Scalar subqueries
* IN subqueries
* EXISTS subqueries
* ALL/ANY subqueries

* Subqueries allow queries to be written in more
declarative ways (recall the “most popular” query)

* But in many cases, they don’t add expressive power

In class exercise

User
142 Bart 10
123 Milhouse 10
857 Lisa 8
456 Alice 8

* What is the output of these queries?

0.9
0.2
0.7
0.3

Member
857 dps
123 gov
857 abc
857 gov
456 abc
456 gov

SELECT name FROM User WHERE age <= ALL(SELECT age FROM User)

SELECT name FROM User WHERE pop < ANY(SELECT pop FROM User)

In class exercise Member

User
857 dps
142 Bart 10 0.9 123 gov
123 Milhouse 10 0.2 857 abc
857 Lisa 8 0.7 857 gov
456 Alice 8 0.3 456 abc
456 gov

* What is the output of these queries?

WITH temp AS (SELECT uid FROM User

WHERE pop < ANY (SELECT pop FROM User))
SELECT name FROM User
WHERE uid NOT IN (SELECT uid FROM temp)

SELECT uid FROM User u
WHERE EXISTS (SELECT gid FROM Member m WHERE m.uid = u.uid)

SQL features covered so far

* Data-definition language (DDL): define/modify
schemas, delete relations

* SELECT-FROM-WHERE statements
* Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
 Subqueries (table, scalar, IN, EXISTS, ALL, ANY)

Aggregates

* Standard SQL aggregate functions:

* Example: number of users under 18, and their
average popularity
* COUNT(*) counts the number of rows
* AVG(x) computes the average values in column x

SELECT COUNT(*), AVG(pop)

FROM User 6 0.625
WHERE age <18,

* Aggregate functions do not appear in WHERE clause

Aggregates with DISTINCT

* Example: How many users belong to at least one
group?

SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

SELECT COUNT(DISTINCT uid)
FROM Member;

User (uid int, name string, age int, pop float)
Group (gid string, name string)

G rO U p i n g Member (uid int, gid string)

* SELECT ... FROM... WHERE ...

’

* Example: compute average popularity

SELECT age, AVG(pop)

FROM User
GROUP BY age;

* Add much expressive power to SFW statements

Example of GROUP BY

SELECT age, AVG(pop) FROM User GROUP BY age;

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

142 Bart 10 0.9
857 Lisa 8 0.7
123 Milhouse 10 0.2

456 Alice 8 0.3 [

Compute SELECT
for each group

142 Bart 10 0.9
123 Milhouse 10 0.2
857 Lisa 8 0.7

< | 456 Alice 8 03

10 0.55
8 0.50

Semantics of GROUP BY

1. Compute FROM (X)
2. Compute WHERE (o)

3. Compute GROUP BY: group rows according to
the values of GROUP BY columns

4. Compute SELECT for each group ()

* For aggregation functions with DISTINCT inputs, first
eliminate duplicates within the group

Aggregates with no GROUP BY

* An aggregate query with no GROUP BY clause =
all rows go into one group

SELECT AVG(pop) FROM User;

Group all rows Aggregate over
into one group the whole group
142 Bart 10 0.9 142 Bart 10 0.9
857 Lisa 8 0.7 E> 857 Lisa 8 0.7 E> 0.525
123 Milhouse 10 0.2 123 Milhouse 10 0.2

456 Alice 8 0.3 456 Alice 8 0.3

Restriction on SELECT

* If a query uses aggregation/group by, then every
column referenced in SELECT must be either

, OF

Why?

“ This restriction ensures that any SELECT
expression produces only one value for each group

SELECT uid, age FROM User GROUP BY age;

SELECT uid, MAX(pop) FROM User; RONG!

HAVING

* Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

* SELECT ... FROM ... WHERE ... GROUP BY ...

)
. Compute FROM (%)
2. Compute WHERE (o)

3. Compute GROUP BY: group rows according to the
values of GROUP BY columns

5. Compute SELECT () for

Example of HAVING

* List the average popularity for

SELECT age, AVG(pop)
FROM User

GROUP BY age
HAVING COUNT(¥*) > 100;

* Can be written using WHERE and table subqueries

SELECT Temp.age, Temp.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize

FROM User GROUP BY age) AS Temp
WHERE Temp.gsize > 100;

Example of HAVING

* Find average popularity for each

SELECT age, AVG(pop)
FROM User

GROUP BY age
HAVING age > 10;

* Can be written using WHERE table subqueries

SELECT age, AVG(pop)
FROM User

WHERE age > 10
GROUP BY age;

SQL features covered so far

* Data-definition language (DDL): define/modify
schemas, delete relations

* SELECT-FROM-WHERE statements

* Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
 Subqueries (table, scalar, IN, EXISTS, ALL, ANY)

* Aggregation and Grouping

* More expressive than relational algebra

ORDER BY

* SELECT ... FROM ... WHERE ... GROUP BY ...
HAVING ...

* ASC = ascending, DESC = descending

* Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out,

Example of ORDER BY

* List all users, sort them by

and
SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name (ASC);
is the option
* Strictly speaking, only columns can appear in the

ORDER BY clause (although some DBMS support more)

* Can use sequence numbers instead of names to refer to
output columns: ;

LIMIT

* The LIMIT clause specifies the number of rows to
return

* E.g., Return top 3 users with highest popularities

SELECT uid, name, age, pop
FROM User

ORDER BY pop DESC
LIMIT 3;

In class exercise

.) Member

* What is the output of these queries?
User 857 dps
SELECT COUNT(DISTINCT gid) L N0
FROM Member; 142 Bart 10 0.9 857 abc
123 Milhouse 10 0.2 857 gov
WITH temp AS 857 Lisa 8 0.7 456 abc
(SELECT uid, COUNT(*) AS cnt 456 Alice 7 06 456 gov

FROM Member GROUP BY uid)

SELECT name

FROM User u, temp t
WHERE t.uid = u.uid AND
t.cnt = (SELECT MAX(cnt)
FROM temp)

In class exercise

] . Member
* What is the output of these queries?

User 857 dps
SELECT AVG(pop) AS apop 13 gov

FROM User 5 : b
GROUP BY age 142 art 10 0.9 57 abc
HAVING COUNT(*) S=> 123 Milhouse 10 0.2 857 gov
ORDER BY apop 857 Lisa 8 0.7 456 abc
LIMIT 2; 456 Alice 7 0.6 456 gov

SELECT AVG(pop) AS apop
FROM User

GROUP BY age
HAVING age>5
ORDER BY apop
LIMIT 2;

Take home exercises

* Using EXISTS, write a query to list the IDs of groups
that have at least two users

* Using WITH-AS and (NOT) IN, write a query to list
the IDs of groups that Lisa belongs to but Ralph
does not

* Write the same query but using EXCEPT (you may
or may not use any other keywords)

SQL features covered so far

* Data-definition language (DDL): define/modify
schemas, delete relations

* SELECT-FROM-WHERE statements

* Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
 Subqueries (table, scalar, IN, EXISTS, ALL, ANY)

» Aggregation and grouping (GROUP BY, HAVING)

* Ordering (ORDER)

