
Lecture 5:
SQL (Basic)

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

• Project Milestone 0
• not graded but due on May 22

• Online office hours by IAs for Assignment 1
• See Piazza for Zoom information
• Friday May 23 4pm - 5pm
• Wednesday May 28 4:30 pm – 5:30pm

2

SQL features covered so far

• Basics
• Data-definition language (DDL): define/modify

schemas, drop relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE statements
• Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

FNext: Nested SQL queries

3

• Query result as a table that can be used in FROM,
set/bag operations, etc.
• Temporarily exist only in the duration of the outer query

• Example: names of users belonging to at least two
groups

Table subqueries

4

SELECT name
FROM User,
 (SELECT DISTINCT m1.uid
 FROM Member m1, Member m2
 WHERE m1.uid=m2.uid AND m1.gid != m2.gid) AS temp
WHERE User.uid = temp.uid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

WITH clause

• Another way of defining a temporary table
• Available only to the query in which the WITH clause

occurs

• Example: names of users belonging to at least two
groups

5

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

WITH temp AS (SELECT DISTINCT m1.uid
 FROM Member m1, Member m2
 WHERE m1.uid=m2.uid AND m1.gid != m2.gid)
SELECT name
FROM User, temp
WHERE User.uid = temp.uid;

• A query that returns a single row can be used as a
value in SELECT, WHERE, etc.
• Example: users at the same age as Bart

• When can this query go wrong?
• Return more than 1 row
• Return no rows or NULL values (in next lecture)

Scalar subqueries
6

SELECT *
FROM User
WHERE age = (SELECT age
 FROM User
 WHERE name = ‘Bart’);

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

• 𝑥 IN (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if 𝑥 is in the result of
𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
• True if 𝑥 equals to some value in the subquery result

• Example: users that have the same age as (some)
Bart

IN subqueries
7

SELECT *
FROM User
WHERE age IN (SELECT age
 FROM User
 WHERE name = ‘Bart’);

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

• EXISTS (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
is non-empty
• True if at least one row is returned by subquery

• Example: users that have the same age as (some)
Bart

• This happens to be a correlated subquery -- a subquery
that references tuple variables in surrounding queries

EXISTS subqueries
8

SELECT *
FROM User u
WHERE EXISTS (SELECT * FROM User
 WHERE name = ‘Bart’
 AND age = u.age);

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

More example

• IDs of users who join at least two groups

• How to find which table a column belongs to?
• Start with the immediately surrounding query
• If not found, look in the one surrounding that; repeat if

necessary

9

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT DISTINCT uid FROM Member m
WHERE EXISTS
 (SELECT m1.uid
 FROM Member m1
 WHERE m.uid = m1.uid AND m.gid != m1.gid)

Use table_name.column_name when appropriate to avoid confusion

More example

• All info of users who join at least two groups

• Query optimizer can decorrelate correlated
subqueries into an equivalent join or aggregation

10

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT * FROM User u
WHERE EXISTS

 (SELECT * FROM Member m1
 WHERE m1.uid = u.uid AND EXISTS

 (SELECT * FROM Member m2
 WHERE m2.uid = u.uid AND m2.gid != m1.gid));

Use table_name.column_name when appropriate to avoid confusion

Quantified subqueries
• Universal quantification (for all):
• … WHERE 𝑥 𝑜𝑝 ALL(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True if for all 𝑡 in the 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result such that 𝑥	𝑜𝑝	𝑡 is

true

• Existential quantification (exists):
• … WHERE 𝑥 𝑜𝑝 ANY(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True if there exists some 𝑡 in the 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result such that
𝑥	𝑜𝑝	𝑡 is true

11

SELECT * FROM User
WHERE NOT (pop < ANY (SELECT pop FROM User));

SELECT * FROM User
WHERE pop >= ALL (SELECT pop FROM User);

More ways to get the most popular

• Which users are the most popular?

12

SELECT *
FROM User
WHERE NOT (pop < ANY(SELECT pop FROM User);

SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

SELECT *
FROM User u
WHERE NOT [EXISTS or IN?]
 (SELECT * FROM User
 WHERE pop > u.pop);

SELECT * FROM User
WHERE uid NOT [EXISTS or IN?]
 (SELECT u1.uid
 FROM User AS u1, User AS u2
 WHERE u1.pop < u2.pop);

EXISTS or IN?

Summary of Subqueries

• We have covered:
• Table subqueries (FROM)
• Scalar subqueries (SELECT, WHERE)
• IN subqueries (WHERE)
• EXISTS subqueries (WHERE)
• ALL/ANY subqueries (WHERE)

• Subqueries allow queries to be written in more
declarative ways (recall the “most popular” query)
• But in many cases, they don’t add expressive power

13

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Alice 8 0.3

14

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User

Member

SELECT name FROM User WHERE pop < ANY(SELECT pop FROM User)

SELECT name FROM User WHERE age <= ALL(SELECT age FROM User)

• What is the output of these queries?

In class exercise

15

• What is the output of these queries?

In class exercise

WITH temp AS (SELECT uid FROM User
 WHERE pop < ANY (SELECT pop FROM User))
SELECT name FROM User
WHERE uid NOT IN (SELECT uid FROM temp)

SELECT uid FROM User u
 WHERE EXISTS (SELECT gid FROM Member m WHERE m.uid = u.uid)

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Alice 8 0.3

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User

Member

How about
uid or *?

SQL features covered so far

• Basics
• Data-definition language (DDL): define/modify

schemas, delete relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE statements
• Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)

FNext: Aggregation and grouping

16

Aggregates

• Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

• Example: number of users under 18, and their
average popularity
• COUNT(*) counts the number of rows
• AVG(𝑥) computes the average values in column 𝑥

• Aggregate functions do not appear in WHERE clause

17

SELECT COUNT(*), AVG(pop)
FROM User
WHERE age <18;

COUNT(*) AVG(pop)

6 0.625

Aggregates with DISTINCT

• Example: How many users belong to at least one
group?

18

SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

SELECT COUNT(DISTINCT uid)
FROM Member;

is equivalent to

Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for each age
group

• Add much expressive power to SFW statements

19

SELECT age, AVG(pop)
FROM User
GROUP BY age;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Example of GROUP BY
20

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Alice 8 0.3

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Alice 8 0.3

Compute SELECT
for each group

age AVG(pop)

10 0.55

8 0.50

SELECT age, AVG(pop) FROM User GROUP BY age;

Semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;
1. Compute FROM (×)
2. Compute WHERE (𝜎)
3. Compute GROUP BY: group rows according to

the values of GROUP BY columns
4. Compute SELECT for each group (𝜋)
• For aggregation functions with DISTINCT inputs, first

eliminate duplicates within the group

FNumber of groups =
 number of rows in the final output

21

Aggregates with no GROUP BY

• An aggregate query with no GROUP BY clause =
all rows go into one group

22

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Alice 8 0.3

Group all rows
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Alice 8 0.3

Aggregate over
the whole group

AVG(pop)

0.525

SELECT AVG(pop) FROM User;

Restriction on SELECT

• If a query uses aggregation/group by, then every
column referenced in SELECT must be either
• Aggregated, or
• A GROUP BY column

Why?
FThis restriction ensures that any SELECT

expression produces only one value for each group

23

SELECT uid, age FROM User GROUP BY age;

SELECT uid, MAX(pop) FROM User;

WRONG!

WRONG!

HAVING

• Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

• SELECT … FROM … WHERE … GROUP BY …
HAVING …;

1. Compute FROM (×)
2. Compute WHERE (𝜎)
3. Compute GROUP BY: group rows according to the

values of GROUP BY columns
4. Compute HAVING (another 𝜎 over the groups)
5. Compute SELECT (𝜋) for each group that passes

HAVING

24

Example of HAVING

• List the average popularity for each age group with
more than a hundred users

• Can be written using WHERE and table subqueries

25

SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING COUNT(*) > 100;

SELECT Temp.age, Temp.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize
 FROM User GROUP BY age) AS Temp
WHERE Temp.gsize > 100;

Example of HAVING

• Find average popularity for each age group over 10

• Can be written using WHERE without table subqueries

26

SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING age > 10;

SELECT age, AVG(pop)
FROM User
WHERE age > 10
GROUP BY age;

SQL features covered so far

• Basics
• Data-definition language (DDL): define/modify

schemas, delete relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE statements
• Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and Grouping

• More expressive than relational algebra

FNext: Ordering output tuples

27

ORDER BY

• SELECT … FROM … WHERE … GROUP BY …
HAVING …
ORDER BY output_column [ASC|DESC], …;

• ASC = ascending, DESC = descending

• Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out, sort the output according to ORDER BY
specification

28

Example of ORDER BY

• List all users, sort them by popularity (descending)
and name (ascending)

• ASC can be omitted since it is the default option
• Strictly speaking, only output columns can appear in the

ORDER BY clause (although some DBMS support more)
• Can use sequence numbers instead of names to refer to

output columns: ORDER BY 4 DESC, 2;

29

SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name (ASC);

Discouraged:
hard to read!

LIMIT

• The LIMIT clause specifies the number of rows to
return

• E.g., Return top 3 users with highest popularities

30

SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC
LIMIT 3;

In class exercise

• What is the output of these queries?

31

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 7 0.6

User

WITH temp AS
(SELECT uid, COUNT(*) AS cnt
FROM Member GROUP BY uid)

SELECT name
FROM User u, temp t
WHERE t.uid = u.uid AND
 t.cnt = (SELECT MAX(cnt)
 FROM temp)

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Alice 7 0.6

User
uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

Member

SELECT COUNT(DISTINCT gid)
FROM Member;

In class exercise

• What is the output of these queries?

32

SELECT AVG(pop) AS apop
FROM User
GROUP BY age
HAVING COUNT(*) >=2
ORDER BY apop
LIMIT 2;

SELECT AVG(pop) AS apop
FROM User
GROUP BY age
HAVING age>5
ORDER BY apop
LIMIT 2;

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Alice 7 0.6

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User

Member

Take home exercises

• Using EXISTS, write a query to list the IDs of groups
that have at least two users

• Using WITH-AS and (NOT) IN, write a query to list
the IDs of groups that Lisa belongs to but Ralph
does not

• Write the same query but using EXCEPT (you may
or may not use any other keywords)

33

SQL features covered so far

• Basics
• Data-definition language (DDL): define/modify

schemas, delete relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE statements
• Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)

FNext: NULL, JOIN, Modification

34

