
Lecture 6
SQL (Basic)

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

• Project Milestone 0 Due today
• Not be graded

• Deadline extended for Assignment 1
• From Thursday May 29 to Sunday Jun 1

• Online office hours by IAs for Assignment 1
• See Piazza for Zoom information
• Friday May 23 4pm - 5pm
• Wednesday May 28 4:30 pm – 5:30pm

2

SQL features covered so far

• Basic topics
• Data-definition language (DDL): define/modify

schemas, drop relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE statements
• Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)

3

Take home exercises

• Using EXISTS, write a query to list the distinct IDs of
groups that have at least two users

4

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT DISTINCT gid FROM Member m
WHERE EXISTS (SELECT m1.gid
 FROM Member m1
 WHERE m.gid = m1.gid and m.uid != m1.uid);

Take home exercises

• Using WITH-AS and (NOT) IN, write a query to list
the IDs of groups that Lisa belongs to but Ralph
does not

5

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

WITH temp AS (SELECT gid
 FROM User u, Member m
 WHERE u.name = ‘Ralph’ and u.uid = m.uid)

SELECT DISTINCT gid
FROM User u, Member m
WHERE name = ‘Lisa’ AND u.uid = m.uid AND
 gid NOT IN (SELECT gid FROM temp);

Take home exercises

• Write the same query but using EXCEPT (you may
or may not use any other keywords)

6

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT gid FROM User u, Member m
WHERE u.name = ‘Lisa’ AND u.uid = m.uid
EXCEPT
SELECT gid FROM User u, Member m
WHERE u.name = ‘Ralph’ AND u.uid = m.uid;

What is next?

• Basic topics
• Data-definition language (DDL): define/modify

schemas, delete relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE statements
• Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)

FNext: NULL and JOIN

7

Incomplete information

• Example: User (uid, name, age, pop)
• Value unknown
• We do not know Nelson’s age

• Value not applicable
• Suppose pop is based on interactions with others on our

social networking site
• Nelson is new to our site; what is their pop?

8

Possible Solution 1

• Dedicate a value from each domain (type)
• pop cannot be −1, so use −1 as a special value to

indicate a missing or invalid pop

• Perhaps the value is not
as special as you think!
• the Y2K bug

9

http://www.90s411.com/images/y2k-cartoon.jpg

SELECT AVG(pop) FROM User;

SELECT AVG(pop) FROM User WHERE pop != -1;

Incorrect answers

Complicated

Possible Solution 2

• A valid-bit for every column
• User (uid,

 name, name_is_valid,
 age, age_is_valid,
 pop, pop_is_valid)

• Complicates schema and queries
• Need almost double the number of columns

10

SELECT AVG(pop) FROM User WHERE pop_is_valid = 1;

Possible Solution 3

• Decompose the table; missing row = missing value
• UserID (uid)
• UserName (uid, name)
• UserAge (uid, age)
• UserPop (uid, pop)

• Conceptually the cleanest solution
• Still complicates schema and queries
• How to get all information about users in a table?
• Natural join doesn’t work!

11

Has a tuple for Nelson
Has a tuple for Nelson
No entry for Nelson
No entry for Nelson

SQL’s solution - NULL

• A special value NULL
• For every domain (i.e., any datatype)

• Example: User (uid, name, age, pop)
• 789, “Nelson”, NULL, NULL

• Special rules for dealing with NULL’s

12

SELECT * FROM User WHERE name=‘Nelson’ AND pop > 0.5 ??

Three-valued logic
13

TRUE = 1, FALSE = 0, UNKNOWN = 0.5
𝑥 AND 𝑦 = min(𝑥, 𝑦)
𝑥 OR 𝑦 = max(𝑥, 𝑦)

NOT 𝑥 = 1 − 𝑥

𝑥 𝑦 𝑥 AND 𝑦 𝑥 OR 𝑦 NOT 𝑥
TRUE TRUE

TRUE UNKNOWN

TRUE FALSE

UNKNOWN TRUE

UNKNOWN UNKNOWN

UNKNOWN FALSE

FALSE TRUE

FALSE UNKNOWN

FALSE FALSE

TRUE TRUE FALSE

TRUE FALSE

FALSE TRUE

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

FALSE

UNKNOWN

UNKNOWN UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

TRUE

UNKNOWN

FALSE

UNKNOWN

Other Rules

• Comparing a NULL with another value (including
another NULL) using =,>, etc., the result is NULL

• WHERE and HAVING clauses only select rows for
output if the condition evaluates to TRUE
• FALSE and UNKNOWN are not sufficient

• Aggregate functions ignore NULL, except COUNT(*)
• SUM, AVG, MIN, MAX all ignore NULLs
• COUNT(age) also ignores NULL
• If all inputs are NULL, SUM, AVG, MIN, MAX all return NULL

14

Will 789 be in the output?
15

SELECT uid FROM User WHERE name=‘Nelson’ AND pop>0.5;

789, “Nelson”, NULL, NULL

SELECT uid FROM User WHERE name=‘Nelson’ OR pop>0.5;

SELECT uid FROM User WHERE NOT pop>0.5;

Unfortunate consequences

• Q1a = Q1b?

• Q2a = Q2b?

• Be careful: NULL breaks many equivalences

16

Q1a. SELECT AVG(pop) FROM User;

Q1b. SELECT SUM(pop)/COUNT(*) FROM User;

Q2a. SELECT * FROM User;

Q2b. SELECT * FROM User WHERE pop = pop;

Another problem

• Example: Who has NULL pop values?

• SQL introduced special, built-in predicates IS NULL
and IS NOT NULL

17

SELECT * FROM User WHERE pop = NULL; Does not work!

(SELECT * FROM User)
EXCEPT
(SELECT * FROM User WHERE pop = pop);

Works, but ugly

SELECT * FROM User WHERE pop IS NULL;

GROUP BY with NULL

• In a GROUP BY clause, any NULL values in the
grouping column(s) are treated all the same
• they end up in one “NULL” group

• If a group has only NULLs, then aggregate function
(except COUNT(*)) returns NULL.

18

uid name age pop

142 Bart NULL 0.9

123 Milhouse 8 NULL

857 Lisa 8 0.7

456 Nelson 8 NULL

324 Alice NULL 0.3

User
SELECT age, AVG(pop), COUNT(*)
FROM User
GROUP BY age;

age AVG(pop) COUNT(*)

8 0.7 3

NULL 0.6 2

uid name age pop

142 Bart NULL 0.9

123 Milhouse 8 NULL

857 Lisa 8 0.7

456 Nelson 8 NULL

324 Alice NULL 0.3

In class exercises
19

User

• What is the output of these queries?

SELECT uid
FROM User
WHERE age > 5 OR pop < 0.5;

SELECT uid
FROM User
WHERE age > 5 AND pop < 0.5;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT AVG(pop), COUNT(*)
FROM User
WHERE age IS NOT NULL
GROUP BY age;

In class exercises
20

• What is the output of these queries?

SELECT name
FROM User
WHERE age IN (SELECT age FROM
User);

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT name
FROM User
WHERE age <= ANY(SELECT age
FROM User) AND pop IS NOT NULL;

SELECT name
FROM User
WHERE age <= ALL(SELECT age
FROM User);

uid name age pop

142 Bart NULL 0.9

123 Milhouse 8 NULL

857 Lisa 8 0.7

456 Nelson 8 NULL

324 Alice NULL 0.3

User

In class exercises

• Write a query to find the ID of all users with non-null
popularity who belong to at least one group.

21

SELECT uid FROM User
WHERE pop IS NOT NULL
AND uid IN (SELECT DISTINCT uid FROM Member);

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

JOIN
• Example: construct a group membership list with all

groups and its members info (if non-empty)

22

SELECT g.gid, gname, u.uid, uname
FROM Group g JOIN Member m ON g.gid =
m.gid JOIN User u ON m.uid = u.uid;

SELECT g.gid, gname, u.uid, uname
FROM Group g, Member m, User u
WHERE g.gid = m.gid AND m.uid = u.uid;

SELECT g.gid, gname, u.uid, uname
FROM Group g NATURAL JOIN Member m
NATURAL JOIN User u;

User (uid int, uname string, age int, pop float)
Group (gid string, gname string)
Member (uid int, gid string)

Need a new JOIN operator

• Example: construct a master group membership list
with all groups and its members info (if non-empty)

• What if a group is empty?
• It may be reasonable for the master list to include

empty groups as well
• For these groups, user id and user name would be NULL

23

SELECT g.gid, gname, u.uid, uname
FROM Group g JOIN Member m ON g.gid = m.gid JOIN User u ON
m.uid = u.uid;

Outerjoin
24

• An extended relational algebra operator
• A full outerjoin (𝑅⟗𝑆) includes:
• All rows in the natural join result of 𝑅 ⋈ 𝑆, plus
• “Dangling” 𝑅 rows (those that do not join with

any 𝑆 rows) padded with NULL’s for 𝑆’s columns
• “Dangling” 𝑆 rows (those that do not join with

any 𝑅 rows) padded with NULL’s for 𝑅’s columns

Example of Outerjoin
25

gid gname

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

gid gname uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

spr Sports Club NULL

foo NULL 789

Group Member Group⟗Member

Left/Right Outerjoin
26

gid gname

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid gname uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

spr Sports Club NULL

Group⟕Member

gid gname uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

foo NULL 789

Group⟖Member

• A left outerjoin (𝑅⟕𝑆) includes rows in 𝑅 ⋈ 𝑆
plus dangling 𝑅 rows padded with NULL’s

• A right outerjoin (𝑅⟖𝑆) includes rows in 𝑅 ⋈
𝑆 plus dangling 𝑆 rows padded with NULL’s

Outerjoin in SQL
27

SELECT * FROM Group LEFT OUTER JOIN
Member ON Group.gid = Member.gid;

SELECT * FROM Group RIGHT OUTER JOIN
Member ON Group.gid = Member.gid;

SELECT * FROM Group FULL OUTER JOIN
Member ON Group.gid = Member.gid;

SELECT * FROM Group NATURAL JOIN
Member; ≈ 𝐺𝑟𝑜𝑢𝑝 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟	

SELECT * FROM Group JOIN Member ON
Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟕
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ⟖
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ⟗
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ⟕
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟⋈

In class exercises
28

SELECT uname, gid
FROM User u LEFT OUTER JOIN
Member m ON u.uid = m.uid;

User (uid int, uname string, age int, pop float)
Group (gid string, gname string)
Member (uid int, gid string)

uid uname age pop

142 Bart 10 0.9

123 Milhouse 10 NULL

857 Lisa 8 0.7

456 Alice 8 NULL

uid gid

857 dps

123 gov

857 abc

123 abc

User Member

• What is the output of these queries?

gid gname

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

Group

SELECT COUNT(uid), COUNT(gname)
FROM Member m RIGHT OUTER JOIN
Group g ON g.gid = m.gid;

SELECT uname, gname
FROM User u NATURAL JOIN Member m NATURAL JOIN Group g;

SQL features covered so far

• Basic topics
• Data-definition language (DDL): define/modify

schemas, delete relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE statements
• Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)
• NULL and JOIN

FNext: Modify data (INSERT/DELETE/UPDATE)

29

INSERT
• Insert one row
• User 789 joins Dead Putting Society

• Insert the result of a query
• Everybody joins Dead Putting Society!

30

INSERT INTO Member VALUES (789, ‘dps’);

INSERT INTO User (uid, name) VALUES (389, ‘Marge');

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

INSERT INTO Member
 (SELECT uid, ‘dps’

FROM User WHERE uid NOT IN
 (SELECT uid FROM Member WHERE gid = ‘dps’));

DELETE

• Delete everything from a table

• Delete according to a WHERE condition
• User 789 leaves Dead Putting Society

• Users over age 18 must be removed from Book Club

31

DELETE FROM Member;

DELETE FROM Member
WHERE uid IN (SELECT uid FROM User WHERE age > 18)
 AND gid = ‘abc';

DELETE FROM Member WHERE uid=789 AND gid=‘dps’;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

DELETE m, u
FROM Member m NATURAL JOIN User u
WHERE age > 18 AND gid = ‘abc';

UPDATE

• Example: User 142 changes name to “Barney”

• Example: We are all popular!

• But won’t update of every row causes average pop to
change?

FSubquery is always computed over the old table

32

UPDATE User
SET name = ‘Barney’ WHERE uid = 142;

UPDATE User
SET pop = (SELECT AVG(pop) FROM User);

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

33

INSERT INTO Member (SELECT uid, ‘spr’ FROM User WHERE age >= 10 AND
 pop IS NOT NULL);

uid uname age pop

142 Bart 10 0.9

123 Milhouse 10 NULL

857 Lisa 8 0.7

456 Alice 8 NULL

uid gid

857 dps

123 gov

857 abc

123 abc

User Member
gid gname

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

Group

• What is the output of these queries?

Take home exercises

DELETE m, g FROM Member m NATURAL JOIN Group g WHERE g.gid = ‘dps’;

UPDATE User u NATURAL JOIN Member m
SET u.age = 11, u.pop = 0.4, m.gid = ‘spr’ WHERE u.uid = 123 and m.gid = ‘gov’;

What is next?

• Basic topics
• Data-definition language (DDL): define/modify

schemas, drop relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE statements
• Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)
• NULL and JOIN
and modify data (INSERT/DELETE/UPDATE)

• Constraints

34

