
Lecture 7:
SQL (Basic/Advanced)

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

SQL features covered so far

• Basic topics
• Data-definition language (DDL): define/modify

schemas, drop relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE statements
• Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)
• NULL and JOIN
and modify data (INSERT/DELETE/UPDATE)

2

3

INSERT INTO Member (SELECT uid, ‘spr’ FROM User WHERE age >= 10 AND
 pop IS NOT NULL);

uid uname age pop

142 Bart 10 0.9

123 Milhouse 10 NULL

857 Lisa 8 0.7

456 Alice 8 NULL

uid gid

857 dps

123 gov

857 abc

123 abc

User Member
gid gname

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

Group

• What is the output of these queries?

Take home exercises

DELETE m, g FROM Member m NATURAL JOIN Group g WHERE g.gid = ‘dps’;

UPDATE User u NATURAL JOIN Member m
SET u.age = 11, u.pop = 0.4, m.gid = ‘spr’ WHERE u.uid = 123 and m.gid = ‘gov’;

What is next?

• Basic topics
• Data-definition language (DDL): define/modify

schemas, drop relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE statements
• Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)
• NULL and JOIN
and modify data (INSERT/DELETE/UPDATE)

• Constraints
4

Constraints

• Restricts what data is allowed in a database
• In addition to the simple structure and type restrictions

imposed by the table definitions

• Why use constraints?
• Protect data integrity (catch errors)
• Tell the DBMS about the data (so it can optimize better)

• Declared as part of the schema and enforced by the
DBMS

5

Types of SQL constraints

• NOT NULL
• Key
• Referential integrity
• Tuple- and attribute-based CHECK
• General assertion

6

Example of NOT NULL

7

CREATE TABLE User
(uid INT NOT NULL,
 name VARCHAR(30) NOT NULL,
 twitterid VARCHAR(15),
 age INT NOT NULL,
 pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL,
 name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,
 gid CHAR(10) NOT NULL);

INSERT INTO User (uid, age)
VALUES (389, 18);

INSERT INTO User VALUES (789,
‘Nelson’, NULL, NULL, NULL);

Incorrect

Incorrect

Examples of PRIMARY KEY

8

CREATE TABLE User
(uid INT NOT NULL PRIMARY KEY,
 name VARCHAR(30) NOT NULL,
 twitterid VARCHAR(15),
 age INT NOT NULL, pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL,
 name VARCHAR(100) NOT NULL,
 PRIMARY KEY (gid));

CREATE TABLE Member
(uid INT NOT NULL,
 gid CHAR(10) NOT NULL,
 PRIMARY KEY (uid, gid));

Option 2 is
required for multi-
attribute keys

At most one primary
key per table

CREATE TABLE Member
(uid INT NOT NULL PRIMARY KEY,
 gid CHAR(10) NOT NULL PRIMARY KEY,

Incorrect
!

option 1

option 2

PRIMARY KEY
should not contain
NULL values

Examples of UNIQUE

9

CREATE TABLE User
(uid INT NOT NULL PRIMARY KEY,
 name VARCHAR(30) NOT NULL UNIQUE,
 twitterid VARCHAR(15) UNIQUE,
 age INT NOT NULL,
 pop DECIMAL(3,2));

Any number of
UNIQUE keys per
table

When defining a UNIQUE
constraint, NULL values
are usually treated as
distinct from each other.

(Recap) Referential integrity

• If a uid appears in Member, it must appear in User
• Member.uid references User.uid

• If a gid appears in Member, it must appear in Group
• Member.gid references Group.gid

FThat is, no “dangling pointers”

10

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

gid name

abc …

gov …

dps …

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User GroupMember

Referential integrity in SQL

• Referenced column(s) must be PRIMARY KEY
• Some systems allow both PRIMARY KEY and UNIQUE

• Referencing column(s) form a FOREIGN KEY
• Example

11

CREATE TABLE Member
(uid INT NOT NULL REFERENCES User(uid),
 gid CHAR(10) NOT NULL,
 PRIMARY KEY (uid,gid),
 FOREIGN KEY (gid) REFERENCES Group(gid));

option 1

option 2

CREATE TABLE Group (…
gid CHAR(10) NOT NULL PRIMARY KEY);

CREATE TABLE User (…
uid INT NOT NULL PRIMARY KEY);

Referential integrity in SQL

• Example

12

CREATE TABLE Member
(uid INT NOT NULL UNIQUE,
 gid CHAR(10) NOT NULL UNIQUE,
 PRIMARY KEY (uid,gid));

Option 2 is
required for

multi-attribute
foreign keys

CREATE TABLE MemberBenefits (…
 FOREIGN KEY (uid,gid) REFERENCES Member(uid,gid));

CREATE TABLE MemberBenefits (…
uid INT NOT NULL REFERENCES Member(uid),

 gid CHAR(10) NOT NULL REFERENCES Member(gid))
Are they

equivalent?

Enforcing referential integrity

Example: Member.uid references User.uid
• Insert or update a Member row whose uid refers to

a non-existent uid in User
• Reject

13

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User Member

Reject000 gov

Enforcing referential integrity

Example: Member.uid references User.uid
• Delete or update a User row whose uid is referenced

by some Member row
• Multiple Options (in SQL)

14

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject Option 2: Cascade
(ripple changes to all
referring rows)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE CASCADE,…);

Enforcing referential integrity

Example: Member.uid references User.uid
• Delete or update a User row whose uid is referenced

by some Member row
• Multiple Options (in SQL)

15

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

NULL abc

NULL gov

… ….

User Member

Option 3: Set NULL
(set all references to NULL)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE SET NULL, …);

Deferred constraint check (optional)
• Example:

• The first INSERT will always violate a constraint!

• Deferred constraint checking is necessary
• Check only at the end of a set of operations (transactions)
• Allowed in SQL as an option
• Use keyword deferred

16

CREATE TABLE Dept
(name CHAR(20) NOT NULL PRIMARY KEY,
 chair CHAR(30) NOT NULL
 REFERENCES Prof(name));

CREATE TABLE Prof
(name CHAR(30) NOT NULL PRIMARY KEY,
 dept CHAR(20) NOT NULL
 REFERENCES Dept(name));

Tuple- and attribute-based CHECK

17

• Associated with a single table!
• Only checked when a tuple or an attribute is updated
• Reject if condition evaluates to FALSE
• TRUE and UNKNOWN are fine

• Examples: each user has age above 0 or NULL

CREATE TABLE User(...
 age INTEGER CHECK(age IS NULL OR age > 0), ...);

CREATE TABLE User(...
age INT,
CONSTRAINT minAge CHECK(age IS NULL OR age > 0), ...);

How about dropping
age IS NULL?

(Recap) WHERE and
HAVING clauses should

evaluate to TRUE

Tuple- and attribute-based CHECK

18

• Examples: if a uid appears in Member, it must
appear in some User row

CREATE TABLE Member
(uid INT NOT NULL,
 CHECK(uid IN (SELECT uid FROM User)), ...);

Checked when
Member is modified
but not when User

is modified

CREATE TABLE Member
(uid INT NOT NULL,
 FOREIGN KEY (uid) REFERENCES User(uid));

Checked when
Member or User

is modified

Are they
equivalent?

Post-Lecture: General assertion

• Can involve multiple tables!
• CREATE ASSERTION …CHECK assertion_condition
• Checked for any modification that could potentially

violate it
• Reject if condition evaluates to FALSE or UNKNOWN
• TRUE is required

• Example: Member.uid references User.uid

19

CREATE ASSERTION MemberUserRefIntegrity
CHECK (NOT EXISTS
 (SELECT * FROM Member
 WHERE uid NOT IN

(SELECT uid FROM User)));

Checked when
Member or User
is modified

CHECK condition
must be TRUE!

Modifying constraints

• Add constraint

• Delete constraint

20

ALTER TABLE Member
ADD CONSTRAINT fk_user FOREIGN KEY(uid) REFERENCES User(uid);

ALTER TABLE Member DROP CONSTRAINT fk_user

ALTER TABLE User
ADD CONSTRAINT chk_pop CHECK (pop >= 0);

ALTER TABLE User
ADD CONSTRAINT unique_name UNIQUE (name);

Cannot directly update
a constraint itself once

it has been created

21

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

Member

Write a DDL to create the MemberBenefits
table

• MemberBenefits references the Member
• (uid,gid) forms the primary key of

MemberBenefits table
• Assume discount is of type INT (and uid is INT

and gid is string with a max of 30 characters)

uid gid discount

857 dps 10

123 gov 25

857 abc 5

MemberBenefits

In class exercises

CREATE TABLE MemberBenefits
(uid INT, gid VARCHAR(30), discount INT,
 PRIMARY KEY (uid,gid),
 FOREIGN KEY (uid,gid) REFERENCES Member(uid,gid));

22

Assume all foreign key references are set
to ON DELETE SET NULL (Assume the db
allows this, just for this exercise)

• What happens when user 857 is deleted
from the User table? (Recall Member
table references uid of User table)

In class exercises
uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

Member

In class exercises

• Assume the User table requires pop column values to
be between 0 and 1. Complete the following DDL
statement.

23

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE TABLE User
(uid INT PRIMARY KEY,
 name VARCHAR(30),
 age INT,
 pop DECIMAL(3,2) ???);

CREATE TABLE User
(uid INT PRIMARY KEY,
 name VARCHAR(30),
 age INT,
 pop DECIMAL(3,2) CHECK (0 <= pop AND pop <= 1));

In class exercises

• Say every user with pop >=0.9 must belong to the
Book Club (gid=‘abc’). Create an assertion to check
this constraint.

24

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE ASSERTION BookClubMembership
CHECK (NOT EXISTS
 (SELECT uid
 FROM User

WHERE pop >= 0.9 AND uid NOT IN (SELECT uid
 FROM Member
 WHERE gid=‘abc’)));

In class exercises

25

• Assume each group contains at least 4 and at
most 5 members. Create an assertion to check
this constraint.

CREATE ASSERTION group_memberships
CHECK (

NOT EXISTS (
SELECT gid FROM Member GROUP BY gid
HAVING COUNT(*) > 5 or COUNT(*) < 4));

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Corner case: when Member table is empty, nothing is returned in NOT
EXISTS subquery and CHECK condition is true. This is still fine since
nothing is stored in Member, hence constraint is preserved
automatically.

In class exercises

26

• Assume each group has an average popularity
among its members of at least 0.2. Create an
assertion to check this constraint.

CREATE ASSERTION avg_popularity_threshold
CHECK (

NOT EXISTS (
SELECT gid
FROM Member m JOIN User u ON m.uid = u.uid
GROUP BY gid
HAVING AVG(pop) < 0.2));

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SQL features covered so far
• Basic topics:
• Data-definition language (DDL): define/modify

schemas, drop relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE statements
• Set/Bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)
• NULL and JOIN
and modify data (INSERT/DELETE/UPDATE)

• Constraints:
• (NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY,

CHECK, ASSERTION)
27

What is next?

• Advanced topics:
• View

28

Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute

the view contents on the fly
• Stored as a query by DBMS instead of query contents
• Can be used in queries just like a regular table

29

CREATE VIEW PopGroup AS
 SELECT * FROM User
 WHERE uid IN (SELECT uid FROM Member
 WHERE gid = ‘popgroup');

DROP VIEW popGroup;

SELECT AVG(pop) FROM PopGroup;

SELECT AVG(pop) FROM
(SELECT * FROM User
WHERE uid IN (SELECT uid FROM
Member WHERE gid = ‘popgroup'))
AS popGroup;

Post-Lecture: Views and Table Subquery

• By Default, a view is simply a stored query and the
query result is NOTphysically stored separately
• But, systems can choose to materialize view (i..e.,
physically store the query results)

• A table subquery is a temporary table that
physically stores data and it only exists in the
duration of the whole query that uses it

30

Why use views?

• To hide complexity from users

• To hide data from users

• Logical data independence

• To provide a uniform interface

31

Modifying views

• Does it even make sense, since views are virtual?
• It does make sense if we want users to really see

views as tables
• Goal: modify base tables such that the modification

would appear to have been done on the view

32

CREATE VIEW UserPop AS SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

DELETE FROM User WHERE uid = 123;
is translated to

An impossible case

• No matter what we do on User, the inserted row
will not be in PopularUser

33

CREATE VIEW PopularUser AS
 SELECT uid, pop FROM User
 WHERE pop >= 0.8;

INSERT INTO PopularUser VALUES(987, 0.3);

A case with too many possibilities

• Set everybody’s pop to 0.5?
• Adjust everybody’s pop by the same amount?
• Just lower one user’s pop?

34

CREATE VIEW AveragePop(pop) AS
 SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

Renamed
column

SQL92 updateable views

• More or less just single-table selection queries
• No join
• No aggregation or group by
• No subqueries
• Attributes not listed in SELECT must be nullable

• Arguably somewhat restrictive
• Still might get it wrong in some cases
• See the slide titled “An impossible case”
• Adding WITH CHECK OPTION to the end of the view

definition will make DBMS reject such modifications

35

Materialized views

• Materialized views: Some systems allow view tables
to be physically stored in database
• If the actual relations used in the view definition change,

the view is kept up-to-date

• Used to enhance performance: avoid recomputing
the view each time
• View maintenance: updating the materialized view

upon base table changes
• Immediately or lazily, up to the DBMS
• (Still a very popular research topic, in particular over fully

dynamic data)

36

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 7 0.3

In class exercises

37

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User

Member

• What is the output of these queries?

CREATE VIEW ageGroups(age,cnt) AS
(SELECT age, COUNT(*) FROM User GROUP BY age)

SELECT age FROM ageGroups
WHERE cnt = (SELECT MAX(cnt) FROM ageGroups);

POST-Lecture

Given any DML that would violate the view’s filter

• If WITH CHECK OPTION: reject outright
• If WITH CHECK OPTION is not specified: it is possible

to “sneak” rows into the base table through the
view -- these rows simply won't appear in the view
• However, such rows can only be inserted into

the base table if they still satisfy the table's
constraints

38

POST-Lecture

• Assume there is a CHECK constraint on User table
such that age is above 0 and below 140

• What happens to the following statements?

• (835, ‘Alex’, 30, 0.2) will not be inserted into User, and it
also will not appear in youngUser
• Same for (923, ‘James’, 150, 0.3)

39

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE VIEW youngUsers AS
 (SELECT * FROM User WHERE age < 25) WITH CHECK OPTION;

INSERT INTO youngUsers VALUES (835, ‘Alex’, 30, 0.2);

INSERT INTO youngUsers VALUES (923, ‘James’, 150, 0.3);

POST-Lecture
• Assume there is a CHECK constraint on User table

such that age is above 0 and below 140

• What happens to the following statements?

• (835, ‘Alex’, 30, 0.2) can be inserted into User table but it
will not appear in youngUser
• (923, ‘James’, 150, 0.3) will not be inserted into User

(since there is a CHECK constraint on the User table
itself) and it also will not appear in youngUser

40

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE VIEW youngUsers AS
 (SELECT * FROM User WHERE age < 25);

INSERT INTO youngUsers VALUES (835, ‘Alex’, 30, 0.2);

INSERT INTO youngUsers VALUES (923, ‘James’, 150, 0.3);

What is next?

• Basic topics:
• Data-definition language (DDL)
• Data-manipulation language (DML)
• Constraints

• Advanced topics:
• View
• Triggers
• Indexes
• Recursion
• Programming (optional; if we have time)

41

