
Lecture 8:
SQL (Advanced)

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcement

• Assignment 1 Due on Jun 1

2

SQL features covered so far

• Basic topics:
• Data-definition language (DDL)
• Data-manipulation language (DML)
• Constraints

• Advanced topics:
• View

3

Post-Lecture: Views and Table Subquery

• By Default, a view is simply a stored query and the
query result is NOT physically stored separately
• But, systems can choose to materialize view (i.e.,

physically store the query results)

• A table subquery is a temporary table that
physically stores data and it only exists in the
duration of the whole query that uses it

4

POST-Lecture: View

Given any DML that attempts to modify view but
violate the view’s filter:

• If WITH CHECK OPTION: reject outright
• If WITH CHECK OPTION is not specified: it is possible

to “sneak” rows into the base table through the
view -- these rows simply won't appear in the view
• However, such rows can only be inserted into

the base table if they still satisfy the table's
constraints

5

POST-Lecture: View

• Assume there is a CHECK constraint on User table
such that age is above 0 and below 140

• What happens to the following statements?

• (835, ‘Alex’, 30, 0.2) will not be inserted into User, and it
also will not appear in youngUser
• Same for (923, ‘James’, 150, 0.3)

6

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE VIEW youngUsers AS
 (SELECT * FROM User WHERE age < 25) WITH CHECK OPTION;

INSERT INTO youngUsers VALUES (835, ‘Alex’, 30, 0.2);

INSERT INTO youngUsers VALUES (923, ‘James’, 150, 0.3);

POST-Lecture: View
• Assume there is a CHECK constraint on User table

such that age is above 0 and below 140

• What happens to the following statements?

• (835, ‘Alex’, 30, 0.2) can be inserted into User table but it
will not appear in youngUser
• (923, ‘James’, 150, 0.3) will not be inserted into User

(since there is a CHECK constraint on the User table
itself) and it also will not appear in youngUser

7

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE VIEW youngUsers AS
 (SELECT * FROM User WHERE age < 25);

INSERT INTO youngUsers VALUES (835, ‘Alex’, 30, 0.2);

INSERT INTO youngUsers VALUES (923, ‘James’, 150, 0.3);

What is next?

• Basic topics:
• Data-definition language (DDL)
• Data-manipulation language (DML)
• Constraints

• Advanced topics:
• View
• Trigger

8

(Recap) Referential Integrity

Example: Member.uid references User.uid
• Delete or update a User row whose uid is referenced

by some Member row
• Multiple Options (in SQL)

9

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject Option 2: Cascade
(ripple changes to all
referring rows)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE CASCADE,
…..);

Option 3: Set NULL

Can we generalize it?

10

Event

Condition

Action

Delete/update
a User row

Whether its uid is referenced
by some Member row

If yes:
Reject/ Delete cascade/Null

Referential
constraints

General
constraints

Some user’s popularity
is updated

Whether the user is a
member of “popgroup”
and pop drops below 0.5

If yes: kick that user
out of popgroup!

Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is TRUE,

execute action

11

CREATE TRIGGER PickyPopGroup

Event

Condition

Action

Transition variable
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
 AND (newUser.uid IN (SELECT uid
 FROM Member
 WHERE gid = ‘popgroup'))
 DELETE FROM Member

 WHERE uid = newUser.uid AND gid = ‘popgroup';

For each
updated row

in User

Trigger option 1 – possible events

• Possible events include:
• INSERT ON table; DELETE ON table; UPDATE [OF column]

ON table

12

CREATE TRIGGER AdjustAverageAge
AFTER INSERT ON Member
REFERENCING NEW ROW AS newMembership
FOR EACH ROW
 UPDATE GROUP
 SET avg_age = (
 SELECT AVG(age)
 FROM User u JOIN Member m ON u.uid = m.uid
 WHERE m.gid = newMembership.gid
)
 WHERE gid = newMembership.gid;

Event

Action

Transition variable

For each
inserted row
in Member

Trigger option 2 – timing

• Timing -- action can be executed:
• AFTER or BEFORE the triggering event
• INSTEAD OF the triggering event on views (more later)

13

CREATE TRIGGER NoFountainOfYouth
BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW
 WHEN (n.age < o.age)
 SET n.age = o.age;

Event

Condition

Action
For each row

to be updated
in User

Transition variable

Trigger option 3 – granularity

• Granularity – the trigger can be activated:
• FOR EACH ROW: execute its action for each individual

affected rows in the event

14

CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
 WHEN (newUser.pop < 0.5)
 AND (newUser.uid IN (SELECT uid
 FROM Member
 WHERE gid = ‘popgroup'))
 DELETE FROM Member
 WHERE uid = newUser.uid AND gid = ‘popgroup';

Event

Condition

Action

For each
updated row

in User

Trigger option 3 – granularity

• Granularity -- the trigger can be activated:
• FOR EACH STATEMENT: execute its action once for the

entire SQL statement (rather than for each individual
row affected by that statement)

15

CREATE TRIGGER PickyPopGroupAgain
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
 DELETE FROM Member
 WHERE gid = ‘popgroup’
 AND uid IN (SELECT uid
 FROM newUsers
 WHERE pop < 0.5);

Event

Condition
& Action

Transition table:
contains all the
affected rows

Can only be used with AFTER triggers

INSTEAD OF triggers for views

• What does this trigger do?

16

CREATE TRIGGER ModifyAveragePop
INSTEAD OF UPDATE ON AveragePop
REFERENCING OLD ROW AS old, NEW ROW AS new
FOR EACH ROW
 UPDATE User
 SET pop = pop + (new.pop - old.pop);

CREATE VIEW AveragePop(pop) AS
 SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

… pop …

0.4

0.4

0.5

0.3

User
0.4

0.5

+0.1

+0.1

+0.1

+0.1

For each row
to be updated
in AveragePop

Transition variables/tables
• OLD ROW: the modified row before the triggering event
• NEW ROW: the modified row after the triggering event
• OLD TABLE: a (hypothetica) read-only table containing all

old rows modified by the triggering event
• NEW TABLE: a (hypothetica) table containing all modified

rows after the triggering event

 AFTER Trigger BEFORE Trigger

17

Event Row Statement

Delete old r old t

Insert new r new t

Update old/new r old/new t

Event Row Statement

Delete old r -

Insert new r -

Update old/new r -

In class exercises
• If a user with pop>0.5 is added to the User table, they must

automatically belong to the ‘popgroup’. Create a trigger
using FOR EACH ROW to achieve this behavior.

18

CREATE TRIGGER AddToPopgroup

Event

Condition

Action

Transition variable
AFTER INSERT ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop > 0.5)
 INSERT INTO Member

 VALUES (newUser.uid, ‘popgroup’)

In class exercises
• If a user with pop>0.5 is added to the User table, they must

automatically belong to the ‘popgroup’. Create a trigger
using FOR EACH STATEMENT to achieve this behavior.

19

CREATE TRIGGER AddToPopgroup

Event

Condition
 & Action

Transition variable
AFTER INSERT ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
 INSERT INTO Member

 (SELECT uid, ‘popgroup’
 FROM newUsers n
 WHERE n.pop > 0.5)

Statement- vs. Row-level triggers

• Simple row-level triggers are easier to implement
• Statement-level triggers: require a significant amount of

state to be maintained in OLD TABLE and NEW TABLE

• However, in some cases, a row-level trigger may be
less efficient
• E.g., 4B rows and a trigger may affect 10% of the rows.

Recording an action for 400M rows, one at a time, is not
feasible due to resource constraints.

• Certain triggers only possible at the statement level

20

Certain triggers are only possible at
statement level

21

CREATE TRIGGER MaintainAvgPop
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers,
 OLD TBALE AS oldUsers
FOR EACH STATEMENT
 WHEN (0.5 > (SELECT AVG(pop) FROM User))

AND (100 < (SELECT COUNT(*) FROM newUsers))
 BEGIN
 DELETE FROM User WHERE uid IN
 (SELECT uid FROM newUsers)
 INSERT INTO User (SELECT * FROM oldUsers)
 END

Event

Condition

Transition tables

Action

SQL features covered so far

• Basic topics:
• Data-definition language (DDL)
• Data-manipulation language (DML)
• Integrity constraint

• Advanced topics:
• View
• Triggers (System issues)

• Recursive firing of triggers
• Interaction with constraints (tricky to get right!)
• Best to avoid when alternatives exist

• Recursion

22

A motivating example

• Example: find Bart’s ancestors
• “Ancestor” has a recursive definition
• 𝑋 is 𝑌’s ancestor if

• 𝑋 is 𝑌’s parent, or
• 𝑋 is Z′s ancestor and 𝑍 is 𝑌’s ancestor

23

Parent (parent, child)

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe
Bart Lisa

MargeHomer

Abe

Orville

Recursion in SQL

• SQL2 had no recursion
• You can find Bart’s parents, grandparents, great

grandparents, etc.

• But you cannot find all his ancestors with a single query

• SQL3 introduced recursion
• WITH RECURSIVE clause
• Many systems support recursion but limited functionality

24

SELECT p1.parent AS grandparent
FROM Parent p1, Parent p2
WHERE p1.child = p2.parent AND p2.child = 'Bart';

WITH RECURSIVE
Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)

 UNION

 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))

SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

base case

Example of Ancestor Query

25

Query using the relation
defined in WITH clause

Define
a relation

recursivelyrecursion step

a1.anc (X) à a1.desc(Z)
a2.anc (Z) à a2.desc (Y)

Finding ancestors

26

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

anc desc

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

Abe Bart

Abe Lisa

Orville Homer

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

Abe Bart

Abe Lisa

Orville Homer

Orville Bart

Orville Lisa

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))

base case

recursive step

Parent

Ancestor

WITH RECURSIVE
Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)

 UNION

 (SELECT anc, child
 FROM Ancestor, Parent
 WHERE desc = parent))

SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

base case

Another example of Ancestor Query

27

Query using the relation
defined in WITH clause

Define
a relation

recursivelyrecursion step

anc (X) à desc(Z)
parent (Z) à child (Y)

Fixed point of a function

• If 𝑓: 𝐷 → 𝐷 is a function from a type 𝐷 to itself, a
fixed point of 𝑓 is a value 𝑥 such that 𝑓 𝑥 = 𝑥
• Example: what is the fixed point of f(x) = x/2?
• Answer: 0 since f(0)=0

• To compute a fixed point of 𝑓:
• Start with a “seed”: 𝑥 ← 𝑥!
• Compute 𝑓 𝑥

• If 𝑓 𝑥 = 𝑥, stop; 𝑥 is fixed point of 𝑓
• (Similar to base case in recursive programming)

• Otherwise, 𝑥 ← 𝑓 𝑥 ; repeat

28

Fixed point of a query

• A query 𝑞 is a function that maps an input table to
an output table
• A fixed point of 𝑞 is a table 𝑇 such that 𝑞 𝑇 = 𝑇

• To compute the fixed point of 𝑞:
• Start with executing 𝑞	on a base table 𝑇!: 𝑇 ← 𝑞(𝑇!)
• Evaluate 𝑞 over 𝑇
• If 𝑞 𝑇 = 𝑇, stop; 𝑇 is a fixed point of 𝑞
• Otherwise, let 𝑞(𝑇) be the new input table;

repeat

29

Restrictions on recursive queries

• A recursive query 𝑞 must be monotonic
• If more tuples are added to the recursive relation, q

must return at least the same set of tuples as before,
and possibly return additional tuples

• The following is not allowed in 𝑞:
• Aggregation on the recursive relation
• NOT EXISTS/NOT IN in generating the recursive relation
• Set difference (EXCEPT) whose right-hand side uses the

recursive relation

30

Lecture 3

SQL features covered so far

• Basic topics:
• Data-definition language (DDL)
• Data-manipulation language (DML)
• Integrity constraint

• Advanced topics:
• View
• Triggers
• Recursion
• Index

31

Motivation of using indexes

• Can we go “directly” to User rows with name='Bart’
instead of scanning the entire table?

• Can we find relevant Member rows “directly”?
 à index on Member.gid

• For each Member row, can we go “directly” to Member
rows with gid = ‘popgroup’?

• For each Member row, can we “directly” look up User
rows with matching Member.uid?

32

SELECT * FROM User WHERE name = 'Bart';

SELECT * FROM User, Member
WHERE User.uid = Member.uid AND Member.gid = ‘popgroup';

Index on User.name

Index on User.uid

Index on Member.gid

Indexes

• An index is an auxiliary persistent data structure
that helps with efficient searches
• Search tree (e.g., B+-tree), lookup table (e.g.,

hash table), etc.
FMore on indexes later in this course!

• Typically, the DBMS will automatically create
indexes for PRIMARY KEY and UNIQUE constraint
declarations

33

CREATE INDEX unique_name ON USER(name);

DROP INDEX unique_name;

Indexes

• An index on 𝑅(𝐴) can speed up accesses of the form
• 𝐴 = 𝑥
• 𝐴 > 𝑥 (depends on the index)
• Can be extended to multi-attribute index 𝑅 𝐴", 𝐴#, … , 𝐴$

• Questions (Indexing Lecture):
FOrdering of index columns is important -- is an index on
𝑅 𝐴, 𝐵 equivalent to one on 𝑅 𝐵, 𝐴 ?

FHow about an index on 𝑅(𝐴) plus another on 𝑅(𝐵)?
FMore indexes = better performance?

34

Summary of SQL
• Basic topics
• Data-definition language (DDL): define/modify

schemas, drop relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE
• DISTINCT, UNION/EXCEPT/INTERSECT (ALL)
• Table, Scalar, IN, EXISTS, ALL, ANY)
• GROUP BY, HAVING
• ORDER
• NULL and JOIN
and modify data (INSERT/DELETE/UPDATE)

• Constraints (NOT NULL, UNIQUE, PRIMARY/FOREIGN
KEY, CHECK, ASSERTION)

• Advanced topics
• View, Triggers, Recursion, Index, Programming (optional)

35

SQL Programming (optional)

• Pros and cons of SQL
• Very high-level, possible to optimize
• Not intended for general-purpose computation

• Can SQL and general-purpose programming
languages (PL) interact with each other?

 YES!!

36

Dynamic SQL
Build SQL statements at

runtime using APIs provided by
DBMS

Embedded SQL
SQL statements embedded in
general-purpose PL; identified

at compile time

Mismatch b/w SQL and PLs (optional)

• SQL operates on a set of records at a time
• Typical low-level general-purpose

programming languages operate on one
record at a time

FSolution: cursor
• Open (a result table), Get next, Close
FFound in virtually every database language/API

• With slightly different syntaxes

37

Dynamic SQL

Working with SQL through an API
• Example: Python psycopg2, JDBC, ODBC (C/C++)
• All based on the SQL/CLI (Call-Level Interface) standard

• The application program sends SQL commands to
the DBMS at runtime

• Responses/results are converted to objects in the
application program

38

import psycopg2
conn = psycopg2.connect(host="db.uwaterloo.ca", port=5432,
dbname="membership", user=‘u1’, password=‘passwd1’))
cur = conn.cursor()
…..

Example API: Python psycopg2

39

Connect to the database

An object used to query
database and get results

import psycopg2
conn = psycopg2.connect(host="db.uwaterloo.ca", port=5432,
dbname="membership", user=‘u1’, password=‘passwd1’)
cur = conn.cursor()
list all groups:
cur.execute('SELECT * FROM Group')
for gid, name in cur:
 print(‘Group ’ + gid + ‘ has name ’ + name)
conn.commit()
cur.close()
conn.close()

Example API: Python psycopg2

40

You can iterate over cur
one tuple at a time

Commit the changes, if
any, and close the cursor
and the DB connection

Example API: Python psycopg2

41

“commit” each change immediately—need to set this option just once at
the start of the session
conn.set_session(autocommit=True)
...
uid = input('Enter the user id to update: ').strip()
name = input('Enter the name to update: ').strip()
pop = float(input('Enter new pop: '))
cur.execute(“
 UPDATE User
 SET pop = %s
 WHERE uid = %s AND name = %s”, (pop, uid, name))

Perform parsing,
semantic analysis,

optimization,
compilation, and
final execution

What’s next?

• Lecture 9: Database Design

42

