
Lecture 10:
Database Design
(E/R Translation)

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

• Assignment 2 released on Learn
• Due on 11:59 PM Jun 24
• Coverage: Lectures 4 – 12
• Content: SQL and Database design
• Crowdmark and Marmost are already open

2

(Recap) E/R concepts

• Entity sets
• Keys
• Weak entity sets

• Relationship sets
• Attributes of relationships
• Multiplicity
• Roles
• Supporting relationships (related to weak entity)
• ISA relationships

• Other extensions:
• Composite and Multi-valued attributes
• Aggregation

3

E/R Model

• E/R Concepts
• E/R Schema Design
• Next: Translating E/R to relational schema

4

Rooms In Buildings
name

year

Rnumber

capacity

In

Seats
Snumber

L/R?

Building (name, year)
Room (building_name, room_number, capacity)
Seat (building_name, room_number,
seat_number, left_or_right)

(1,1)

(1,1)

Translating entity sets

• An entity set translates directly to a table
• Attributes → columns
• Key attributes → key columns

5

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

User (uid, name) Group (gid, name)

Translating weak entity sets

• Remember the “borrowed” key attributes
• Watch out for attribute name conflicts!

6

Building (building_name, year)
Room (building_name, room_number, capacity)

Seat (building_name, room_number, seat_number, left_or_right)

Rooms In Buildings
name

year

Rnumber

capacity

In Seats

SnumberL/R?

(1,1)

(1,1)

Translating relationship sets

• A relationship set translates to a table
• Keys of connected entity sets → columns
• Attributes of the relationship set (if any) → columns
• Multiplicity of the relationship set determines the key of

the table

7

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

Member (uid, gid, fromDate)
• If we can deduce the general cardinality constraint (0,1) for a component

entity set E, then take the primary key attributes for E
• Otherwise, choose primary key attributes of each component entity

Translating relationship sets

• A relationship set translates to a table
• Keys of connected entity sets → columns
• Attributes of the relationship set (if any) → columns
• Multiplicity of the relationship set determines the key of

the table

8

Users Groups
gid

name
IsOwnerOf

uid

name

fromDate

Owner (uid, gid, fromDate)
• If we can deduce the general cardinality constraint (0,1) for a component

entity set E, then take the primary key attributes for E
• Otherwise, choose primary key attributes of each component entity

(0,1)

More examples

9

Users IsParentOf

parent

child

Parent (parent_uid, child_uid)

uid

Translating double diamonds?

• No need to translate because the relationship is
implicit in the weak entity set’s translation

10

Relationship
RoomInBuilding (building_name, room_number)

is subsumed by entity
Room (building_name, room_number, capacity)

Rooms In Buildings
name

year

Rnumber

capacity

In Seats

SnumberL/R?

(1,1)

(1,1)

Translating ISA: Approach 1

• Entity-in-all-superclasses approach (“E/R style”)
• An entity is represented in the table for each subclass to

which it belongs
• A table includes only the attributes directly attached to

the corresponding entity set, plus the inherited key

11

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name)
Member (uid, gid, from_date)

〈142, Bart〉
〈456, Ralph〉

∈

〈456, J〉 ∈ PaidUser (uid, avatar)

Translating ISA: Approach 2

• Entity-in-most-specific-class approach (“OO style”)
• An entity is only represented in one table (the most

specific entity set to which the entity belongs)
• A table includes the attributes attached to the

corresponding entity set, plus all inherited attributes

12

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name)
Member (uid, gid, from_date)
PaidUser (uid, name, avatar)

〈142, Bart〉

〈456, Ralph, J〉

∈

∈

Translating ISA: Approach 3

• All-entities-in-one-table approach (“NULL style”)
• One relation for the root entity set, with all attributes

found in the network of subclasses (plus a “type”
attribute when needed)
• Use a special NULL value in irrelevant columns for a

particular entity

13

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

〈142, Bart , NULL〉
〈456, Ralph, J〉

∈
Group (gid, name)
User (uid, name, avatar)
Member (uid, gid, from_date)

Comparison of three approaches

• Entity-in-all-superclasses
• User (uid, name), PaidUser (uid, avatar)
• Pro:
• Con:

• Entity-in-most-specific-class
• User (uid, name), PaidUser (uid, name, avatar)
• Pro:
• Con:

• All-entities-in-one-table
• User (uid, [type], name, avatar)
• Pro:
• Con:

14

All users are found in one table
Attributes of paid users are scattered in different tables

All attributes of paid users are found in one table
Users are scattered in different tables

Everything is in one table
Lots of NULL’s; complicated if class hierarchy is complex

Translating composite and multi-
valued attributes

15

Address

street

city

provinceHobbies

Employee

Composite: Employee(eID, street, city, province, postcode)

Multi-valued: EmployeeHobbies(eID, hobby)
 Foreign key: eID references Employee

eID

postcode

Case study 2

16

Design a database consistent with the following:
• A station has a unique name and an address, and is either an

express station or a local station
• A train has a unique number and an engineer, and is either an

express train or a local train
• A local train can stop at any station
• An express train only stops at express stations
• A train can stop at a station for any number of times during a day
• Train schedules are the same everyday

Can you draw a E/R diagram?

Case study 2: first design

17

Design a database consistent with the following:
• A station has a unique name and an address, and is either an express

station or a local station
• A train has a unique number and an engineer, and is either an express

train or a local train
• A local train can stop at any station
• An express train only stops at express stations
• A train can stop at a station for any number of times during a day
• Train schedules are the same everyday

Trains StopsAt Stations

name

address

number

E/L?

engineer

E/L? time

Why not
good?

Case study 2: first design

18

Design a database consistent with the following:
• A station has a unique name and an address, and is either an express

station or a local station
• A train has a unique number and an engineer, and is either an express

train or a local train
• A local train can stop at any station
• An express train only stops at express stations
• A train can stop at a station for any number of times during a day
• Train schedules are the same everyday

Trains StopsAt Stations

name

address

number

E/L?

engineer

E/L? time

Why not
good?

Cannot prevent
express trains

from stopping at
any local stations

Unintended constraint: A
train can stop at a station
only ONCE during a day!

Case study 2: second design

19

Trains Stations
name

address

number

engineer

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA ISA

• A station has a unique name and an address, and is either an express
station or a local station

• A train has a unique number and an engineer, and is either an
express train or a local train

• …..

Case study 2: second design

20

• …
• A local train can stop at any station
• An express train only stops at express stations
• A train can stop at a station for any number of times during a day
• …

Trains Stations
name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

(1,1)

(1,1)

(1,1) (1,1)

Case study 2: second design

21

Trains Stations
name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

Is the extra complexity worth it? Yes! Captures
more constraints and avoids unintended info

(1,1)

(1,1)

(1,1) (1,1) (OPTIONAL) single
diamonds is fine since
train number and time
can determine a stop

Case study 2: final E/R diagram

22

Trains Stations
name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

(1,1)

(1,1)

(1,1) (1,1)

Case study 2: E/R translation

23

Train (train_number, engineer)
LocalTrain (local_train_number)
ExpressTrain (express_train_number)

Station (station_name, address)
LocalStation (local_station_name)
ExpressStation (express_station_ame)

LocalTrainStopsAtStation (local_train_number, time, station_name)
ExpressTrainStopsAtStation (express_train_number, time, express_station_name)

Trains Stations
name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

(1,1)

(1,1)

(1,1) (1,1)

Case study 2: Simplification

24

Train (train_number, engineer)
LocalTrain (local_train_number)
ExpressTrain (express_train_number)

Station (station_name, address)
LocalStation (local_station_name)
ExpressStation (express_station_ame)

LocalTrainStopsAtStation (local_train_number, time, station_name)
ExpressTrainStopsAtStation (express_train_number, time, express_station_name)

• Eliminate the LocalTrain table
• Redundant: can be computed as

 𝜋$%&'() 𝑇𝑟𝑎𝑖𝑛 − 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑇𝑟𝑎𝑖𝑛
• Slightly harder to check that local_train_number is

indeed a local train number

• Eliminate LocalStation table
• It can be computed as 𝜋!"#$ 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑆𝑡𝑎𝑡𝑖𝑜𝑛

Case study 2: An alternative design
Train (number, engineer, type)
Station (name, address, type)
TrainStop (train_number, station_name, time)

• Encode the type of train/station as a column rather
than creating subclasses
• What about the following constraints?
• Type must be either “local” or “express”
• Express trains only stop at express stations
FThey can be expressed/declared explicitly as database

constraints in SQL
FArguably a better design because it is simpler!

25

Design principles

• Avoid redundancy

• Capture essential constraints, but don’t introduce
unnecessary restrictions

• Use your common sense
• Warning: mechanical translation procedures given in this

lecture are no substitute for your own judgment

26http://ungenius.files.wordpress.com/2010/03/thehomer.jpg

POOR DESIGN!

Case study 3
• A Registrar’s Database:

• Zero or more sections of a course are offered each term. Courses have
names and numbers. In each term, the sections of each course are
numbered starting with 1.

• Most course sections are taught on-site, but a few are taught at off-site
locations.

• Students have student numbers and names.
• Each course section is taught by a professor. Professors have professor

numbers and names. A professor may teach more than one section in a
term, but if a professor teaches more than one section in a term, they are
always sections of the same course. Some professors do not teach every
term.

• Up to 50 students may be registered for a course section. Sections with 5 or
fewer students are cancelled.

• A student receives a mark for each course in which they are enrolled. Each
student has a cumulative grade point average (GPA) which is calculated
from all course marks the student has received.

27

Case study 3

28

CourseNum Course

SectionOf

Professor
Student

StudentNum

StudentName

Section

CourseName

EnrolledIn
TaughtBy

SectionNum

Term

(term, sectionNum)
is unique given the

courseNum

Zero or more sections of a course
are offered each term. Courses
have names and numbers. In each
term, the sections of each course
are numbered starting with 1.

ProfNum
ProfName

(1,1)

Case study 3

29

CourseNum Course

SectionOf

Professor
Student

StudentNum

StudentName

Section

CourseName

EnrolledIn
TaughtBy

SectionNum

Term
(1,1)

Off-site
Section

location

ISA

Most course sections are
taught on-site, but a few are
taught at off-site locations.

ProfNum
ProfName

Case study 3

30

CourseNum Course

SectionOf

Professor
Student

StudentNum

StudentName

Section

CourseName

EnrolledIn
TaughtBy

Term

ProfNum
ProfName

(1,1)

(1,1)

(0,*)

Off-site
Section

location

SectionNum

Each course section is
taught by a professor.
A professor may teach
more than one section
in a term, but if a
professor teaches more
than one section in a
term, they are always
sections of the same
course. Some
professors do not teach
every term.

We did not
capture this
requirement

ISA

Case study 3

31

CourseNum Course

SectionOf

Professor
Student

StudentNum

StudentName

Section

CourseName

EnrolledIn
TaughtBy

Term

ProfNum
ProfName

(1,1)

(1,1)

(6,50)

(0,*)
(0,*)

SectionNum

Up to 50 students may
be registered for a
course section. Sections
with 5 or fewer students
are cancelled.

Off-site
Section

location

ISA

Case study 3

32

CourseNum Course

SectionOf

Professor
Student

StudentNum

StudentName

Section

CourseName

EnrolledIn
TaughtBy

Term

ProfNum
ProfName

(1,1)

(1,1)

(6,50)

(0,*)
(0,*)Mark

GPA

(1,1)SectionNum

A student receives a mark
for each course in which
they are enrolled. Each
student has a cumulative
grade point average (GPA)
which is calculated from all
course marks the student
has received.

We did not
capture this
requirement

Off-site
Section

location

ISA

Case study 3

33

CourseNum

Course

SectionOf

Professor
Student

StudentNum

StudentName

Section

CourseName

EnrolledIn
TaughtBy

SectionNum
Term

ProfNum
ProfName

(1,1)

(1,1)

(6,50)

(0,*)

Off-site
Section

location

ISA

Mark

GPA

Course (CourseNum, CourseName)
Student(StudentNum, StudentName, GPA)
Professor(ProfNum, ProfName)
Section(CourseNum, Term, SectionNum, ProfNum)
EnrolledIn(CourseNum, Term, SectionNum, StudentNum, Mark)
OffSiteSection(CourseNum, Term, SectionNum, location)

34

CREATE TABLE Course
(CourseNum INTEGER PRIMARY KEY,
 CourseName CHAR(50));

CREATE TABLE Professor
(ProfNum INTEGER PRIMARY KEY,
 ProfName CHAR(50));

CREATE TABLE Student
(StudentNum INTEGER PRIMARY KEY,
StudentName CHAR(50),
GPA FLOAT);

CREATE TABLE Section
(CourseNum INTEGER NOT NULL REFERENCES
Course(CourseNum),
SectionNum INTEGER NOT NULL,
Term INTEGER NOT NULL,
PRIMARY KEY(CourseNum, SectionNum, Term),
ProfNum INTEGER NOT NULL REFERENCES
Professor(ProfNum));

CREATE TABLE Off-SiteSection
(CourseNum INTEGER NOT NULL,
SectionNum INTEGER NOT NULL,
Term INTEGER NOT NULL,
Location CHAR(50),
FOREIGN KEY
(CouseNum,SectionNum,Term) REFERENCES
Section(CouseNum,SectionNum,Term));

CREATE TABLE EnrolledIn
(CourseNum INTEGER NOT NULL,
SectionNum INTEGER NOT NULL,
Term INTEGER NOT NULL,
StudentNum INTEGER NOT NULL REFERENCES
Student(StudentNum),
Mark INTEGER,
Primary Key (CourseNum, SectionNum,Term,
StudentNum),
FOREIGN KEY(CouseNum,SectionNum,Term)
REFERENCES
Section(CouseNum,SectionNum,Term));

Case study 3
Course (CourseNum, CourseName)
Student(StudentNum, StudentName, GPA)
Professor(ProfNum, ProfName)
Section(CourseNum, Term, SectionNum, ProfNum)
EnrolledIn(CourseNum, Term, SectionNum, StudentNum, Mark)
OffSiteSection(CourseNum, Term, SectionNum, ProfNum)

Database Design

• Entity-Relationship (E/R) model

• Translating E/R to relational schema

• Next lecture: principles of relational schema

35

