Lecture 11: Database Design (Theory)

CS348 Spring 2025: Introduction to Database Management

> Instructor: **Xiao Hu** Sections: 001, 002, 003

Announcements

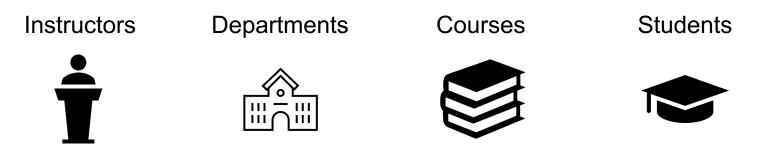
- Solutions of Assignment 1 will be released on Learn soon
- Grading of Assignment 1 will be released soon
- Appeal period of Assignment 1
 - One week after the grading is released
 - Watch out for the Piazza announcement!
 - Reach out to IA (Guy Coccimiglio) and the corresponding TA

Database Design – where are we?

- Understand the real-world domain being modeled and constrained
- Entity-Relationship model
- Translate E/R diagram to relational data model
- (Refine a good database schema)
- Create DBMS schema (using DDL SQL)

Case Study

• Consider a simple university DB:



- External application constraints such as:
 - Each instructor has name, salary, and department
 - Each instructor is officially affiliated with one department
 - Each department has one building and one budget
 - Each student can have at most one advisor from each department

Case Study

Redundant data replication! (CS, DC, 20000) repeated k times if there are k instructors in CS!

 Possible Design: one large table InstructorDep with one row for each instructor

<u>instructorID</u>	name	salary	depName	bldng	budget
111	Alice	5000	CS	DC	20000
222	Bob	4000	Physics	PHY	30000
333	Carl	5200	CS	DC	20000
444	Diana	5500	CS	DC	20000

Fail to capture corner cases!

- If the building of CS is changed to E4?
- If the only instructor in Physics retires?
- If new department (w/o yet an instructor) is added?

Case Study

 Possible Design: consider the following schema for courses with one row for each course offering

CourseID	term	instructorName	capacity
CS348	S23	Sujaya	100
CS341	W25	Lap Chi	80
CS348	W25	Semih	100
CS348	S25	Xiao	100
CS350	W19	Salem	130

- Is there any redundancy? Unclear!
 - Depends on the external application constraints
 - If courses have one associated capacity (independent of term): Redundant
 - Otherwise, repetition may be necessary

Decompositions: A good example

Break down a complex database schema into smaller, more manageable pieces

name	salary	depName	bldng	budget
Alice	5000	CS	DC	20000
Bob	4000	Physics	PHY	30000
Carl	5200	CS	DC	20000
Diana	5500	CS	DC	20000
	Alice Bob Carl	Alice 5000 Bob 4000 Carl 5200	Alice5000CSBob4000PhysicsCarl5200CS	Alice5000CSDCBob4000PhysicsPHYCarl5200CSDC

instructorID	name	salary	depName
111	Alice	5000	CS
222	Bob	4000	Physics
333	Carl	5200	CS
444	Diana	5500	CS

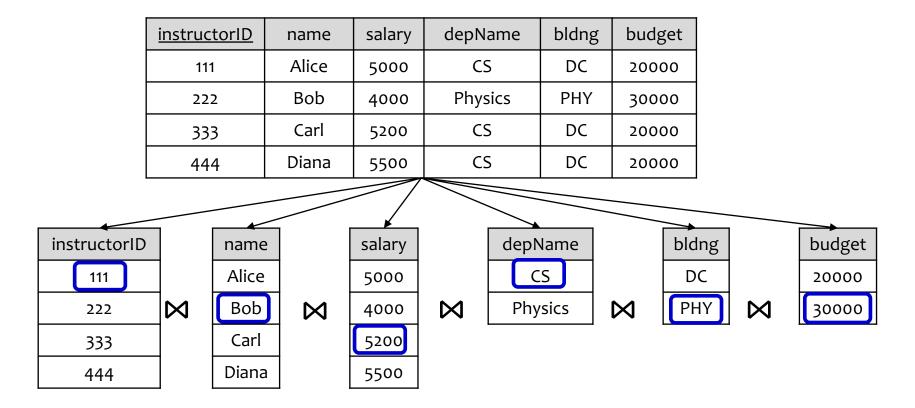
bldng	budget
DC	20000
РНҮ	30000
	DC

Why can we recover all original tuples by joins?

instructorID	name	salary	depName	bldng	budget
111	Alice	5000	CS	DC	20000
222	Bob	4000	Physics	PHY	30000
333	Carl	5200	CS	DC	20000
444	Diana	5500	CS	DC	20000

 \bowtie

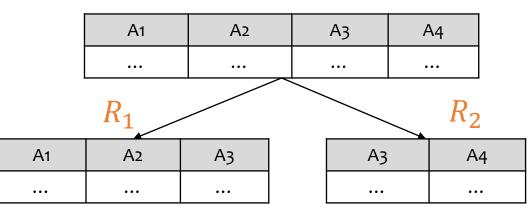
Decompositions: A bad example



instructorID	name	salary	depName	bldng	budget
111	Alice	5000	CS	DC	20000
111	Bob	5200	CS	PHY	30000
	•••	•••	•••	•••	

Lossy? But I got more rows! Can't tell what's fact and what's not, so we lose information!

Decompositions



R

- R is decomposed into R_1 and R_2
 - Attribute $(R_1) \cup \text{Attribute}(R_2) = \text{Attribute}(R)$
 - *R*₁ and *R*₂ are the projections of *R* onto Attribute (*R*₁) and Attribute(*R*₂)
- Any decomposition gives $R \subseteq R_1 \bowtie R_2$
 - Lossless decomposition if $R = R_1 \bowtie R_2$
 - Lossy decomposition if $R \subset R_1 \bowtie R_2$

For any tuple $(a, b, c, d) \in R$, $(a, b, c) \in R_1$ and $(c, d) \in R_2$; then $(a, b, c) \bowtie$ $(c, d) \in R_1 \bowtie R_2$

Decompositions

- Break down a complex database schema into smaller, more manageable pieces while preserving data integrity and relationships
- What is a good or bad decomposition?

• How to obtain a good decomposition?

Normal Forms

- Given a set of constraints about the real-world facts that an application will store, how can we formally separate "good" and "bad" relational database schemas?
- Normal Forms (NF): Normalization helps in reducing data redundancy and improving data integrity, making it easier to manage and maintain databases.

Overview of Normal Forms

- First Normal Form (1NF)
 - atomic, domain
- Second Normal Form (2NF)
 - 1NF + no partial dependency
- Third Normal Form (3NF)
 - 2NF + no transitive dependency
- Boyce-Codd Normal Form (BCNF)
 - 3NF + dependency starts from the superkey
- Fourth Normal Form (4NF)
 - BCNF + no multi-valued dependency
- Fifth Normal Form (5NF)
 - 4NF + no redundancy due to join
- Sixth Normal Form (6NF)
 - 5NF + support temporal data

Less redundancy and more constraints preserving

More restrictive

What is next?

- Functional dependency (this lecture)
- Boyce-Codd Normal Form (BCNF)
- Third Normal Form (3NF)

A Motivation Example

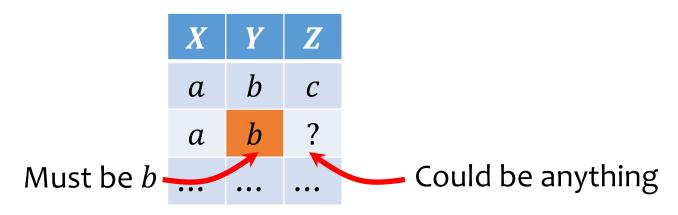
• Consider the following schema for InstructorDept

instructorID name salary depName bldng budget

- Each instructorID has 1 name and salary
 - instructorID determines name and salary
- Each depName has 1 building and 1 associated budget
 - depName determines bldng and budget
- Each instructorID, depName is unique in InstructorDep
 - instructorID and depName together determine all remaining attributes, including name, salary, bldgn and budget
- How about instructorID and name together determining name? This is trivial!

Functional dependencies

• $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y



Formal definition

Let t[A] be a tuple t's projection on attributes A Let X, Y be sets of attributes

- A FD X \rightarrow Y holds in a relation R if any given pair of tuples t_1 and $t_2 \in R$ with $t_1[X] = t_2[X]$, we must have $t_1[Y] = t_2[Y]$.
- We say X determines Y
- A FD X → Y holds in a relation R means that X → Y holds on all instances of R

Redefining "keys" using FD's

A set of attributes K is a key for a relation R if

- $K \rightarrow \text{all (other)}$ attributes of R
 - That is, K is a "super-key"
- No proper subset of K satisfies the above condition
 - That is, K is minimal

Closure of FD sets: \mathcal{F}^+

- How do we know what additional FDs hold on a schema *R*?
- A set \mathcal{F} of FDs logically implies $X \to Y$ if $X \to Y$ holds in all instances of R that satisfy \mathcal{F}
- The closure of a FD set \mathcal{F} (denoted as \mathcal{F}^+):
 - The set of all FDs that are logically implied by ${\mathcal F}$
 - Informally, \mathcal{F}^+ includes all of the FDs in \mathcal{F} , i.e., $\mathcal{F} \subseteq F^+$, plus any dependencies they imply.

 \mathcal{F}^+

 ${\mathcal F}$

Armstrong's Axioms

• Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$ (trivially)

instructorID, name \rightarrow instructorID

• Augmentation: if $X \rightarrow Y$, then $XZ \rightarrow YZ$ (trivially)

If instructorID \rightarrow salary , then instructorID, name \rightarrow salary, name

• Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

If instructor ID \rightarrow depName and depName \rightarrow budget, then instructorID \rightarrow budget

Implications of Armstrong's Axioms

- Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Union: If $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$
- Pseudo-transitivity: If $X \rightarrow Y$ and $YZ \rightarrow T$ then $XZ \rightarrow T$
- Using Armstrong's Axioms, you can prove or disprove a (derived) FD given a set of (base) FDs

Prove a FD in \mathcal{F}^+

instructorID, projID \rightarrow funds

```
\mathcal{F} includes:
instructorID \rightarrow name
projID \rightarrow projName, projDep
instructorID, projID \rightarrow hours
projDep, hours \rightarrow funds
```

- projID → projName, projDep
- projID → projDep (decomposition)
- instructorID, projID → instructorID, projDep (augmentation)
- instructorID, projID \rightarrow hours
- instructorID, projID \rightarrow instructorID, hours, projDep (union)
- instructorID, projID → hours, projDep (decomposition)
- hours, projDep \rightarrow funds
- instructorID, projID → funds (transitivity)

Compute \mathcal{F}^+ from \mathcal{F}

- Start with closure $\mathcal{F}^+ = \mathcal{F}$
- For each FD f in \mathcal{F}^+
 - Apply reflexivity and augmentation rules on f
 - Add the resulting FD to \mathcal{F}^+
- For each pair of FDs f1 and f2 in \mathcal{F}^+
 - If f1 and f2 can be combined using the transitivity rule, add the resulting FD to \mathcal{F}^+
- Repeat until no new FD can be added to \mathcal{F}^+

Reasoning with \mathcal{F}^+

Given a relation R and a set \mathcal{F} of FD's

- Does another $FD X \rightarrow Y$ follow from \mathcal{F} ?
 - Compute \mathcal{F}^+ with respect to \mathcal{F}
 - If $(X \to Y) \in \mathcal{F}^+$, then $X \to Y$ follows from \mathcal{F}
- Is *K* a key of *R*?
 - If $(K \to R) \in \mathcal{F}^+$, K is a super key
 - Still need to verify that *K* is *minimal* (how?)
 - Hint: For any proper subset X of K, $(X \to R) \notin \mathcal{F}^+$

Attribute closure: Z⁺

Given the relation schema R and a set \mathcal{F} of FDs

- The closure of attributes X (denoted as X^+) is the set of all attributes $\{A_1, A_2, \dots, A_k\}$ functionally determined by X (that is, $X \to A_1A_2 \dots A_K$)
- Algorithm for computing the closure ComputeX⁺(X, F):
 - Start with closure = X
 - If $Z \rightarrow Y$ is in \mathcal{F} and Z is already in the closure, then also add Y to the closure
 - Repeat until no new attributes can be added

In class exercise

Given a relation R(ABCDEFG) under a set F of FDs,
 computeX⁺({B,F},F)?

${\mathcal F}$ includes:	
A, $B \rightarrow F$	
$A \rightarrow C$	
$B \rightarrow E, D$	
$D, F \rightarrow G$	

FD	Z^+
initial	<i>B</i> , <i>F</i>
$B \rightarrow E, D$	B, F, E, D
D, $F \rightarrow G$	B, F, E, D, <mark>G</mark>

In class exercise

Given a relation EmpProj (SIN, pnum, hours, ename, pname, ploc, allowance) under a set *F* of FDs, computeX⁺({pnum, hours}, *F*)?

${\mathcal F}$ includes:	FD	Z^+
SIN, pnum \rightarrow hours	initial	pnum, hours
SIN \rightarrow ename pnum \rightarrow pname, ploc	pnum → pname, ploc	pnum, hours, pname, ploc
ploc, hours \rightarrow allowance	ploc, hours \rightarrow allowance	pnum, hours,pname, ploc, allowance

In class exercise

Given a relation EmpProj (SIN, pnum, hours, ename, pname, ploc, allowance) under a set *F* of FDs, computeX⁺({SIN, pnum}, *F*)?

	FD	Z^+
${\mathcal F}$ includes:	initial	SIN, pnum
SIN, pnum \rightarrow hours SIN \rightarrow ename	$SIN \rightarrow ename$	SIN, pnum , ename
pnum \rightarrow pname, ploc	pnum \rightarrow pname, ploc	SIN, pnum , ename, pname, ploc
ploc, hours \rightarrow allowance	SIN, pnum \rightarrow hours	SIN, pnum , ename, pname, ploc, hours
	ploc, hours → allowance	SIN, pnum , ename, pname, ploc, hours. allowance

• Compute X^+ ({SIN, pnum, hours}, \mathcal{F})?

Reasoning with X^+

Given a relation R and a set \mathcal{F} of FD's

- Does another $FD X \rightarrow Y$ follow from \mathcal{F} ?
 - Compute X^+ with respect to \mathcal{F}
 - If $Y \subseteq X^+$, then $X \to Y$ follows from \mathcal{F}
- Is *K* a key of *R*?
 - Compute K^+ with respect to \mathcal{F}
 - If K⁺ contains all the attributes of R, K is a super key
 - Still need to verify that *K* is *minimal* (how?)
 - Hint: check the attribute closure of its proper subset, i.e., Check that for no set X formed by removing attributes from K is K⁺the set of all attributes

Alternative: Compute \mathcal{F}^+ from X^+

Subset-closure enumeration

- List every subset $X \subseteq R$
- Compute its attribute closure X^+ under \mathcal{F}
- Then all FDs $X \to Y$ with $Y \subseteq X^+$ lie in \mathcal{F}^+

What is next?

- Functional dependencies
 - Armstrong's axioms
 - Closure of FDs
 - Closure of attributes
- Next lecture: Decomposition
 - Boyce-Codd Normal Form (BCNF)
 - Third Normal Form (3NF)