Lecture 11:
Database Design

(Theory)

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

* One week after the grading is released
* Watch out for the Piazza announcement!

* Reach out to IA (Guy Coccimiglio) and the corresponding
TA

Database Design — where are we?

Conceptual Conceptual Logical Logical Schema
Desip - Schema GEEIRGE]
E (E/R model) esign model)

* Understand the real-world domain being modeled
and constrained

* Entity-Relationship model

* Translate E/R diagram to relational data model
* (Refine a good database schema)

* Create DBMS schema (using DDL SQL)

Case Study

* Consider a simple university DB:

Instructors Departments Courses Students
®

'i' ::é?::: g 3

* External application constraints such as:
* Each instructor has name, salary, and department

* Each instructor is officially affiliated with one
department

* Each department has one building and one budget

 Each student can have at most one advisor from
each department

Ca Se St g d y Redundant data replication! (CS,

DG, 20000) repeated k times if
there are k instructors in CS!

* Possible Design: one large table InstructorDep with
one row for each instructor

instructorID | name | salary | depName | bldng | budget
11 Alice 5000 CS DC 20000
222 Bob 4000 Physics PHY 30000
333 Carl 5200 CS DC 20000
444 Diana 5500 CS DC 20000

Fail to capture corner cases!

* If the building of CS is changed to E4?
* If the only instructor in Physics retires?
* If new department (w/o yet an instructor) is added?

Case Study

* Possible Design: consider the following schema for
courses with one row for each course offering

CourselD term instructorName | capacity
| (CS348 | S23 Sujaya 100
CS341 W25 Lap Chi 80

CS348 W25 Semih 100
| (CS348 | S25 Xiao 100

CS350 W19 Salem 130

* |s there any redundancy?
* Depends on the external application constraints

* If courses have one associated capacity (independent of
term): Redundant

* Otherwise, repetition may be necessary

Decompositions: A good example

instructorlD name salary | depName | bldng | budget
Break down a complex :
. M Alice 5000 cS DC 20000
database schema into ;
222 Bob 4000 Physics PHY 30000
Sma”er’ more 333 Carl 5200 CS DC 20000
manageable pleces 444 Diana 5500 (&) DC 20000
instructorID name‘ salary | depName
111 Alice | 5000 cs depName bldng | budget
222 Bob | 4000 Physics 4 CS DC 20000
333 Carl | 5200 CS Physics PHY 30000
444 Diana | 5500 CS
instructorID | name salary | depName | bldng | budget
Why can we recover a" 1M Alice 5000 cs DC 20000
o o o o 222 Bob 4000 Physics PHY 30000
original tuples by joins?
333 Carl 5200 cS DC 20000
444 Diana 5500 csS DC 20000

Decompositions: A bad example

instructorlD name salary | depName | bldng | budget
11 Alice 5000 CS DC 20000
222 Bob 4000 Physics PHY 30000
333 Carl 5200 CS DC 20000
444 Diana 5500 CS DC 20000

7

v

instructorlD name salary depName bldng buElget
111 Alice 5000 CS DC 20000
222 24 Bob X 4000 | X4 Physics 4 PHY || D4 30000
333 Carl
444 Diana 5500
. Lossy? But | got more
instructorID | name | salary | depName | bldng | budget rows! Can’t te" What’s
11 Alice | 5000 CS DC 20000 ¢
e Bob | 5200 | s | PHY | 30000 | factand what’s not, so
we lose information!

Decompositions R

A1 A2 A3 A4
A1 A2 A3 A3 A4

* R is decomposed into R, and R,
e Attribute (R;) U Attribute(R,) = Attribute (R)
* R, and R, are the projections of R onto Attribute (7,) and

Attribute(7,)
o, 0 o F
* Any decomposition gives R © R; < Ry oo
* Lossless decompositionif @ = R, = R, (a,b,c) € Ry and

(C) d) € RZ)
then (a, b, c) ™
(c,d)€ER; X R,

* Lossy decompositionif R © R = R,

Decompositions

* Break down a complex database schema into
smaller, more manageable pieces

* What is a good or bad decomposition?

* How to obtain a good decomposition?

Normal Forms

* Given a set of constraints about the real-world facts
that an application will store, how can we formally
separate “good” and “bad” relational database
schemas?

Normalization helps in
and

)
making it easier to manage and maintain databases.

12

Overview of Normal Forms

* First Normal Form (1NF)

e atomic, domain CILe(s;s
redundancy
* Second Normal Form (2NF) S
* INF + no partial dependency constraints
* Third Normal Form (3NF) preserving

* 2NF + no transitive dependency

Boyce-Codd Normal Form (BCNF)
* 3NF + dependency starts from the superkey

Fourth Normal Form (4NF)

* BCNF + no multi-valued dependency
Fifth Normal Form (5NF)
* 4NF + no redundancy due to join

Sixth Normal Form (6NF)
* 5NF + support temporal data

What is next?

* Boyce-Codd Normal Form (BCNF)
* Third Normal Form (3NF)

A Motivation Example

* Consider the following schema for InstructorDept

oty | rame | iy depme | i

Each instructorID has 1 name and salary
* instructorID determines name and salary

Each depName has 1 building and 1 associated budget
* depName determines bldng and budget

Each instructorID, depName is unique in InstructorDep

* instructorID and depName together determine all remaining
attributes, including name, salary, bldgn and budget

How about instructorID and name together determining
name? This is trivial!

14

Functional dependencies

* X = Y means that whenever two tuplesin R agree
on all the attributes in X, they must also agree on
all attributesinY

a b c

a b | ?
Must be b_/ _ Could be anything

Formal definition

Let be a tuple t’s projection on attributes

Let X, Y be sets of attributes

* AFD X — Y holds in a relation R if any given pair of
tuples t, and t, € R with , we must have

* We say X Y

e AFD X— Y holdsinarelation Rmeansthat X - Y
holds on of R

Redefining “keys” using FD’s
A set of attributes K is a for arelation R if

* K — all (other) attributes of R
 Thatis, Kis a

* No proper subset of K satisfies the above condition
 Thatis, Kis

Closure of FD sets: F*

e How do we know what FDs hold on a
schema R?

e Aset F of FDs X->YifX-Y
holds in

* The of a FD set F (denoted as 7): F
* The set of all FDs that are logically implied by F

* Informally, 7 "includes all of the FDs in F, i.e.,, F € FT,
plus any dependencies they imply.

7:'+

Armstrong’s Axioms

If Y C X, then X — Y (trivially)

instructorlID, name — instructoriD

if X =Y, then XZ — YZ (trivially)

If instructorID — salary, then
instructorID, name — salary, name

ifX—>YandY — Z,thenX—Z

If instructor ID — depName and depName — budget,
then instructorID — budget

Implications of Armstrong’s Axioms

If X —>YZ,thenX—>Yand X —Z
fX—>Yand X —> ZthenX—YZ
fX—>YandYZ —->TthenXZ—T

* Using Armstrong’s Axioms, you can prove or disprove
a (derived) FD given a set of (base) FDs

Prove a FD In T-I_ F includes:

instructorlD — name
projlD — projName, projDep

instructoriD, projl D — funds instructorlID, projlD — hours

projDep, hours — funds

projlD — projName, projDep

projlD — projDep

instructorlD, projlD — instructorlD, projDep
instructorlID, projlD — hours

instructorlID, projlD — instructorID, hours, projDep
instructorlID, projlD — hours, projDep

hours, projDep — funds

instructorlD, projlD — funds

Compute F* from F

e Start with closure F* = F

* ForeachFD fin F*
* Apply and rules on
 Add the resulting FD to F*

* For each pairof FDs firand f2 in F™

* If 11 and 2 can be combined using the
, add the resulting FD to F*

* Repeat until no new FD can be added to F*

Reasoning with F*

Given arelation R and aset F of FD’s

Compute with respect to F

o If ,then X — Y follows from F
o If , [{ is a super key
» Still need to verify that K is (how?)

* Hint: For any proper subset X of K,

Attribute closure:

Given the relation schema R and a set F of FDs

* The (denoted as X) is the
set of

(thatis, X = A4, ... Agx)

* Algorithm for computing the closure

e Start with closure =X

e |If and , then also
add Y to the closure

* Repeat until no new attributes can be added

In class exercise

* Given arelation R(ABCDEFG) under a set F of FDs,
computeX*({B,F}, F)?

F includes:
A B—-F
A-C
B—E D
D,F—->G

R
initial B,F

B—ED B,F,E D

D,F-G B, F,ED,C

25

25

In class exercise

* Given a relation EmpProj (SIN, pnum, hours, ename,
pname, plog, allowance) under a set F of FDs,

F includes:
SIN, pnum — hours initial pnum, hours
5IN = ename ! pnum — pnum, hours,
pnum = pndme, ploc pname, ploc ~ pname, ploc

ploc, hours — allowance
ploc, hours - pnum, hours,pname,

allowance ploc, allowance

In class exercise

* Given a relation EmpProj (SIN, pnum, hours, ename,
pname, plog, allowance) under a set F of FDs,

F includes: initial SIN, pnum
SIN, pnum — hours

SIN — ename

pnum — pname, ploc
ploc, hours — allowance SIN, pnum = hours SIN, pnum , ename, pname, ploc,
hours

SIN = ename SIN, pnum, ename

pnum — pname, ploc SIN, pnum, ename, pname, ploc

ploc, hours — SIN, pnum , ename, pname, ploc,
allowance hours, allowance

Reasoning with X

Given arelation R and aset F of FD’s

Compute X with respect to F
IfY € X%, then X - Y follows from F

Compute K with respect to F
If K contains all the attributes of R, K is a super key

Still need to verify that K is (how?)

* Hint: check the attribute closure of its proper subset, i.e., Check
that for no set X formed by removing attributes from K is
K*the set of all attributes

Alternative: Compute F* from X ™

Subset-closure enumeration

* Compute its attribute closure X under F
* Then all FDs with liein F*

What is next?

* Functional dependencies
* Armstrong’s axioms
* Closure of FDs
* Closure of attributes

