
Lecture 11: 
Database Design 

(Theory)
CS348 Spring 2025:

Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003



Announcements

• Solutions of Assignment 1 will be released on Learn
soon

• Grading of Assignment 1 will be released soon

• Appeal period of Assignment 1
• One week after the grading is released
• Watch out for the Piazza announcement!
• Reach out to IA (Guy Coccimiglio) and the corresponding 

TA

2



Database Design – where are we?

• Understand the real-world domain being modeled 
and constrained 
• Entity-Relationship model
• Translate E/R diagram to relational data model 
• (Refine a good database schema)
• Create DBMS schema (using DDL SQL)

3

Conceptual 
Design

Conceptual 
Schema

(E/R model)

Logical 
Design

Logical Schema
(Relational 

model)



Case Study
• Consider a simple university DB:

• External application constraints such as:
• Each instructor has name, salary, and department
• Each instructor is officially affiliated with one 

department
• Each department has one building and one budget
• Each student can have at most one advisor from 

each department

4

Instructors Departments Courses Students



Case Study

• Possible Design: one large table InstructorDep with 
one row for each instructor

• If the building of CS is changed to E4?
• If the only instructor in Physics retires?
• If new department (w/o yet an instructor) is added?

5

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

Redundant data replication! (CS, 
DC, 20000) repeated k times if 

there are k instructors in CS!

Fail to capture corner cases!



Case Study
• Possible Design: consider the following schema for 

courses with one row for each course offering

• Is there any redundancy? 
• Depends on the external application constraints
• If courses have one associated capacity (independent of 

term): Redundant
• Otherwise, repetition may be necessary

6

CourseID term instructorName capacity

CS348 S23 Sujaya 100

CS341 W25 Lap Chi 80

CS348 W25 Semih 100

CS348 S25 Xiao 100

CS350 W19 Salem 130

Unclear!



Decompositions: A good example
7

instructorID name salary depName

111 Alice 5000 CS

222 Bob 4000 Physics

333 Carl 5200 CS

444 Diana 5500 CS

depName bldng budget

CS DC 20000

Physics PHY 30000

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

⋈

Why can we recover all 
original tuples by joins?

Break down a complex 
database schema into 

smaller, more 
manageable pieces



Decompositions: A bad example
8

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

instructorID

111

222

333

444

name

Alice

Bob

Carl

Diana

salary

5000

4000

5200

5500

depName

CS

Physics

bldng

DC

PHY

budget

20000

30000⋈ ⋈ ⋈ ⋈ ⋈

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

111 Bob 5200 CS PHY 30000

… … … … … …

Lossy? But I got more 
rows! Can’t tell what’s 
fact and what’s not, so 
we lose information!



Decompositions

• 𝑅	 is decomposed into 𝑅" and 𝑅#
• Attribute (𝑅!) ∪ Attribute(𝑅") = Attribute (𝑅)
• 𝑅! and 𝑅" are the projections of 𝑅 onto Attribute (𝑅!) and 

Attribute(𝑅")

• Any decomposition gives 𝑅 ⊆ 𝑅" ⋈ 𝑅#
• Lossless decomposition if 𝑅 = 𝑅! ⋈ 𝑅"
• Lossy decomposition if 𝑅 ⊂ 𝑅! ⋈ 𝑅"

9

A1 A2 A3

… … …

A3 A4

… …

A1 A2 A3 A4

… … … …

𝑅

𝑅! 𝑅"

For any
tuple	(𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝑅,
(𝑎, 𝑏, 𝑐) ∈ 𝑅! and
(𝑐, 𝑑) ∈ 𝑅";

then (𝑎, 𝑏, 𝑐)⋈
𝑐, 𝑑 ∈ 𝑅! ⋈ 𝑅"



Decompositions

• Break down a complex database schema into 
smaller, more manageable pieces while preserving 
data integrity and relationships

• What is a good or bad decomposition?

• How to obtain a good decomposition?

10

Normal 
Forms!



Normal Forms

• Given a set of constraints about the real-world facts 
that an application will store, how can we formally 
separate “good” and “bad” relational database 
schemas?

• Normal Forms (NF): Normalization helps in reducing 
data redundancy and improving data integrity, 
making it easier to manage and maintain databases.

11



Overview of Normal Forms
• First Normal Form (1NF)

• atomic, domain 
• Second Normal Form (2NF)

• 1NF + no partial dependency
• Third Normal Form (3NF)

• 2NF + no transitive dependency
• Boyce-Codd Normal Form (BCNF)

• 3NF + dependency starts from the superkey
• Fourth Normal Form (4NF) 

• BCNF + no multi-valued dependency 
• Fifth Normal Form (5NF)

• 4NF + no redundancy due to join
• Sixth Normal Form (6NF)

• 5NF + support temporal data

12

More 
restrictive

Less
redundancy

and more
constraints
preserving



What is next?
• Functional dependency (this lecture)
• Boyce-Codd Normal Form (BCNF)
• Third Normal Form (3NF)

13



A Motivation Example

• Consider the following schema for InstructorDept

• Each instructorID has 1 name and salary 
• instructorID determines name and salary 

• Each depName has 1 building and 1 associated budget 
• depName determines bldng and budget

• Each instructorID, depName is unique in InstructorDep
• instructorID and depName together determine all remaining 

attributes, including name, salary, bldgn and budget
• How about instructorID and name together determining 

name? This is trivial!

14

instructorID name salary depName bldng budget



Functional dependencies

• 𝑋 → 𝑌 means that whenever two tuples in 𝑅 agree 
on all the attributes in 𝑋, they must also agree on 
all attributes in 𝑌

15

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐
𝑎 ? ?

… … …

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐
𝑎 𝑏 ?

… … …Must be 𝑏 Could be anything



Formal definition

Let t[A] be a tuple t’s projection on attributes A

Let X, Y be sets of attributes

• A FD X → Y holds in a relation R if any given pair of
tuples t1 and t2 ∈ R with t1[X] = t2[X], we must have 
t1[Y] = t2[Y].

• We say X determines Y
• A FD X → Y holds in a relation R means that 𝑋 → 𝑌

holds on all instances of 𝑅

16

16



Redefining “keys” using FD’s

A set of attributes K is a key for a relation R if 

• K→ all (other) attributes of R
• That is, K is a “super-key”

• No proper subset of K satisfies the above condition
• That is, K is minimal

17

17



Closure of FD sets: ℱ!

• How do we know what additional FDs hold on a 
schema 𝑅? 

• A set ℱ	of FDs logically implies 𝑋 → 𝑌 if 𝑋 → 𝑌
holds in all instances of 𝑅 that satisfy ℱ

• The closure of a FD set ℱ (denoted as ℱ$): 
• The set of all FDs that are logically implied by ℱ
• Informally, ℱ.includes all of the FDs in ℱ, i.e., ℱ ⊆ 𝐹., 

plus any dependencies they imply.

18

ℱ ℱ#

18



Armstrong’s Axioms

• Reflexivity: If Y⊆ X, then X → Y (trivially)

• Augmentation: if X → Y, then XZ → YZ (trivially)

• Transitivity: if X → Y and Y → Z, then X → Z

19

19

instructorID, name→ instructorID

If instructorID → salary , then 
instructorID, name → salary, name

If instructor ID → depName and depName → budget, 
then instructorID → budget



Implications of Armstrong’s Axioms

• Decomposition: If X → YZ, then X → Y and X → Z

• Union: If X → Y and X → Z then X → YZ

• Pseudo-transitivity: If X → Y and YZ → T then XZ→ T 

• Using Armstrong’s Axioms, you can prove or disprove 
a (derived) FD given a set of (base) FDs

20

20



Prove a FD in ℱ!

instructorID, projID → funds

• projID → projName, projDep 
• projID → projDep (decomposition)
• instructorID, projID → instructorID, projDep (augmentation)
• instructorID, projID → hours
• instructorID, projID → instructorlD, hours, projDep (union)
• instructorID, projID → hours, projDep (decomposition)
• hours, projDep → funds
• instructorID, projID → funds (transitivity) 

21

21

ℱ includes:
instructorID → name
projID → projName, projDep
instructorID, projID → hours
projDep, hours → funds



Compute ℱ! from ℱ
• Start with closure ℱ$ = ℱ	
• For each FD f in ℱ$ 
• Apply reflexivity and augmentation rules on f
• Add the resulting FD to ℱ$ 

• For each pair of FDs f1 and f2 in ℱ$

• If f1 and f2 can be combined using the
transitivity rule, add the resulting FD to ℱ$

• Repeat until no new FD can be added to ℱ$ 

22

22



Reasoning with ℱ!

Given a relation 𝑅 and a set ℱ	of FD’s
• Does another FD 𝑋 → 𝑌 follow from ℱ? 
• Compute ℱ. with respect to ℱ
• If 𝑋 → 𝑌 ∈ ℱ., then 𝑋 → 𝑌 follows from ℱ

• Is 𝐾 a key of 𝑅?
• If 𝐾 → 𝑅 ∈ ℱ., 𝐾 is a super key
• Still need to verify that 𝐾 is minimal (how?)

• Hint: For any proper subset 𝑋 of 𝐾, 𝑋 → 𝑅 ∉ ℱ!

23

23



Attribute closure: 𝑍!

Given the relation schema 𝑅 and a set ℱ	of FDs
• The closure of attributes 𝑋 (denoted as 𝑋$) is the 

set of all attributes 𝐴", 𝐴#, …𝐴+  functionally 
determined by 𝑋 (that is, 𝑋 → 𝐴"𝐴#…A,)

• Algorithm for computing the closure 
Compute𝑋$(𝑋, ℱ):
• Start with closure = 𝑋
• If 𝑍 → 𝑌 is in ℱ and 𝑍 is already in the closure, then also 

add 𝑌 to the closure
• Repeat until no new attributes can be added

24



In class exercise

FD 𝑍!

initial 𝐵, 𝐹

25

ℱ includes:
A, B → F  
A → C
B → E, D
D, F → G

• Given a relation R(ABCDEFG) under a set ℱ of FDs, 
compute𝑋$ 𝐵, 𝐹 , ℱ ?

B → E, D B, F, E, D

D, F → G B, F, E, D, G

25



In class exercise
26

• Given a relation EmpProj (SIN, pnum, hours, ename,
pname, ploc, allowance) under a set ℱ of FDs, 
compute𝑋$({pnum, hours}, ℱ)?

26

ℱ includes:
SIN, pnum → hours  
SIN → ename
pnum → pname, ploc
ploc, hours → allowance

FD 𝑍!

initial pnum, hours
pnum → 
pname, ploc

pnum, hours, 
pname, ploc

ploc, hours → 
allowance 

pnum, hours,pname, 
ploc, allowance



FD 𝑍#

initial SIN, pnum 

27

ℱ includes:
SIN, pnum → hours  
SIN → ename
pnum → pname, ploc
ploc, hours → allowance

SIN → ename SIN, pnum , ename

pnum → pname, ploc SIN, pnum , ename, pname, ploc

SIN, pnum → hours  SIN, pnum , ename, pname, ploc, 
hours

ploc, hours → 
allowance

SIN, pnum , ename, pname, ploc, 
hours, allowance

In class exercise

• Given a relation EmpProj (SIN, pnum, hours, ename,
pname, ploc, allowance) under a set ℱ of FDs, 
compute𝑋$({SIN, pnum}, ℱ)?

• Compute𝑋$({SIN, pnum, hours}, ℱ)?



Reasoning with 𝑋!

Given a relation 𝑅 and a set ℱ	of FD’s
• Does another FD 𝑋 → 𝑌 follow from ℱ? 
• Compute 𝑋. with respect to ℱ
• If 𝑌 ⊆ 𝑋., then 𝑋 → 𝑌 follows from ℱ

• Is 𝐾 a key of 𝑅?
• Compute 𝐾. with respect to ℱ
• If 𝐾. contains all the attributes of 𝑅, 𝐾 is a super key
• Still need to verify that 𝐾 is minimal (how?)

• Hint: check the attribute closure of its proper subset, i.e., Check 
that for no set X formed by removing attributes from 𝐾	is 
𝐾!the set of all attributes

28

28



Alternative: Compute ℱ! from 𝑋!

Subset-closure enumeration
• List every subset 𝑋 ⊆ 𝑅
• Compute its attribute closure 𝑋$ under ℱ
• Then all FDs 𝑋 → 𝑌 with 𝑌 ⊆ 𝑋$ lie in ℱ$ 

29

29



What is next?

• Functional dependencies
• Armstrong’s axioms
• Closure of FDs
• Closure of attributes

• Next lecture: Decomposition
• Boyce-Codd Normal Form (BCNF)
• Third Normal Form (3NF)

30


