Lecture 12: Database Design (Theory)

CS348 Spring 2025: Introduction to Database Management

> Instructor: **Xiao Hu** Sections: 001, 002, 003

Announcements

- Appealing of Assignment 1
 - Check remark request guidelines on Piazza
 - Reach out to corresponding TA, IA (Guy), ISC (Sylvie)
 - Check sample solutions on Learn
- Milestone 1 of Group Project
 - Due on June 19
- Switch-type cut-off for assessment
 - Due on June 19
- Assignment 2
 - Coverage: Lecture 4 Lecture 12
 - Check online office hours on Piazza
 - Due on June 24

(Recap) Data Redundancy!

 Possible Design: one large table InstructorDep with one row for each instructor

<u>instructorID</u>	name	salary	depName	bldng	budget
111	Alice	5000	CS	DC	20000
222	Bob	4000	Physics	РНҮ	30000
333	Carl	5200	CS	DC	20000
444	Diana	5500	CS	DC	20000

• Decomposition: Break down a complex database schema into smaller, more manageable pieces while maintaining data integrity and relationships

(Recap) Decompositions _R

- R is decomposed into R_1 and R_2
 - Attribute $(R_1) \cup \text{Attribute}(R_2) = \text{Attribute}(R)$
 - *R*₁ and *R*₂ are the projections of *R* onto Attribute (*R*₁) and Attribute(*R*₂)
- Any decomposition gives $R \subseteq R_1 \bowtie R_2$
 - Lossless decomposition if $R = R_1 \bowtie R_2$
 - Lossy decomposition if $R \subset R_1 \bowtie R_2$

For any tuple $(a, b, c, d) \in R$, $(a, b, c) \in R_1$ and $(c, d) \in R_2$; then $(a, b, c) \bowtie$ $(c, d) \in R_1 \bowtie R_2$

(Recap) A good decomposition

			structorID	name	salary	depName	bldng	budget
			111	Alice	5000	CS	DC	20000
			222	Bob	4000	Physics	PHY	30000
			333	Carl	5200	CS	DC	20000
			444	Diana	5500	CS	DC	20000
						·		
instructorID	name	salary	depName	2				
instructorID 111	name Alice	salary 5000	depName CS	2	[depName	bldng	budget
instructorID 111 222	name Alice Bob	salary 5000 4000	depName CS Physics		4	depName CS	bldng DC	budget 20000
instructorID 111 222 333	name Alice Bob Carl	salary 5000 4000 5200	depName CS Physics CS		4	depName CS Physics	bldng DC PHY	budget 20000 30000
instructorID 111 222 333 444	name Alice Bob Carl Diana	salary 5000 4000 5200 5500	depName CS Physics CS CS	≥ ►	⊲	depName CS Physics	bldng DC PHY	budget 20000 30000

Why can we recover all original tuples by joins?

instructorID	name	salary	depName	bldng	budget
111	Alice	5000	CS	DC	20000
222	Bob	4000	Physics	PHY	30000
333	Carl	5200	CS	DC	20000
444	Diana	5500	CS	DC	20000

(Recap) A bad decomposition

instructorID	name	salary	depName	bldng	budget
111	Alice	5000	CS	DC	20000
111	Bob	5200	CS	PHY	30000
•••			•••		

Lossy? But I got more rows! Can't tell what's fact and what's not, so we lose information!

Outline for Today

- Functional Dependencies
- Decomposition:
 - Lossless
 - Dependency-preserving
- Boyce-Codd Normal Form (BCNF)
- Third Normal Form (3NF)

Lossless decomposition

• We should be able to reconstruct the instance of the original table from the instances of the tables in the decomposition

A decomposition $\{R_1, R_2\}$ of R is lossless if and only if the common attributes of R_1 and R_2 form a superkey for either schema, i.e., $R_1 \cap R_2 \to R_1$ or $R_1 \cap R_2 \to R_2$

> (See Lecture 11) If X is a superkey of R, then $X \rightarrow R$

Is this a lossless decomposition?

• Consider $R = \{sno, sname, city, pno, pname, price\}$ and a decomposition (R_1, R_2) below:

<u>sno</u>	sname	city	<u>pno</u>	pname	price
S1	Apple	K-W	P1	А	\$25
S1	Apple	K-W	P2	В	\$34
S2	BestBuy	London	Р3	А	\$5
S2	BestBuy	London	•••	•••	•••

Lossy since $R_1 \cap R_2 =$ {pname} is not a superkey of either R_1 or R_2

Which one is better?

 ${\mathcal F}$ includes:

 $project \rightarrow department$ $department \rightarrow division$ $project \rightarrow division$

 Consider Company = {project, department, division} under a set F of FDs, and two different decompositions:

 $R_1 = \{ project, department \}$ $R_2 = \{ department, division \}$

 $R_1 = \{ project, department \}$ $R_2 = \{ project, division \}$

- Both are lossless. (Why?)
- However, testing FDs is easier on one of them. (Which?)

Testing FDs

 \mathcal{F} includes: project \rightarrow department department \rightarrow division Project \rightarrow division

 Consider Company = {project, department, division} under a set F of FDs, and two different decompositions:

decomposition 1:

 $R_1 = \{ project, department \}$ $R_2 = \{ department, division \}$

test in R_1

project \rightarrow department department \rightarrow division project \rightarrow division

> No need to test since it is implied by the other two FDs

test in R_2

decomposition 2:

 $R_1 = \{ project, department \}$ $R_2 = \{ project, division \}$

test in R_1

 $\begin{array}{c} \text{project} \rightarrow \text{department} \\ \text{department} \rightarrow \text{division} \\ \text{project} \rightarrow \text{division} \end{array}$

test in R_2

11

Dependency-preserving decomposition

• We should be able to (explicitly and implicitly) test all dependencies in each base table of the decomposition

Given a schema R and a set \mathcal{F} of FDs, a decomposition of R is dependency preserving if there is an equivalent set \mathcal{F}' of FDs to \mathcal{F} , none FD in \mathcal{F}' is cross-table in the decomposition.

• Given a set of FDs \mathcal{F} , we say \mathcal{F}' is equivalent to \mathcal{F} if their closures are the same, i.e., $\mathcal{F}^+ = \mathcal{F}'^+$.

Outline for Today

- Functional Dependencies
- Decomposition:
 - Lossless
 - Dependency-preserving
- Boyce-Codd Normal Form (BCNF)
- Third Normal Form (3NF)

Boyce-Codd Normal Form (BCNF)

- A relation R is in BCNF under \mathcal{F} if each FD $X \to Y \in \mathcal{F}^+$ with $XY \subseteq R$ satisfies:
 - either $X \to Y$ is trivial, i.e., $Y \subseteq X$
 - or X is a super key of R, i.e., $X \rightarrow R$

• Is *R* = {sno, sname, city, pno, pname, price} under *F* in BCNF?

 \mathcal{F} includes: sno \rightarrow sname, city pno \rightarrow pname sno, pno \rightarrow price

(See Lecture 11) How to determine if K is a superkey of R?

Compute BCNF decomposition

Repeat the following until all relations are in BCNF

- Step 1: Find a BCNF violation
 - A relation *R* in the decomposition
 - A non-trivial FD $X \to Y$ in \mathcal{F}^+ with $XY \subseteq R$, where X is not a super key of R
- Step 2: Decompose *R* into *R*₁ and *R*₂
 - R_1 has attributes $X \cup Y$;
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y

Example of BCNF decomposition

(See Lecture 11) How to determine if K is a superkey of R? \mathcal{F} includes: sno \rightarrow sname, city pno \rightarrow pname sno, pno \rightarrow price

BCNF helps remove redundancy

<u>sno</u>	sname	city	<u>pno</u>	pname	price
S 1	Apple	K-W	P1	А	\$25
S1	Apple	K-W	P2	В	\$34
S1	Apple	K-W	Р3	А	\$20
S2	BBuy	London	•••		•••
BCNF violation: sno \rightarrow sname, city					

 \mathcal{F} includes: sno \rightarrow sname, city pno \rightarrow pname sno, pno \rightarrow price

<u>sno</u>	<u>pno</u>	pname	price
S1	P1	А	\$25
S1	P2	В	\$34
S1	Р3	А	\$20
S2	•••	•••	•••

<u>sno</u>	sname	city
S1	Apple	K-W
S2	BBuy	London

Another example

 \mathcal{F} includes: uid \rightarrow uname, twitterid twitterid \rightarrow uid uid, gid \rightarrow fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate) BCNF violation: uid \rightarrow uname, twitterid

User (uid, uname, twitterid)

uid \rightarrow uname, twitterid twitterid \rightarrow uid

In BCNF (why?)

Member (uid, gid, fromDate)

uid, gid \rightarrow fromDate

In BCNF (why?)

Is BCNF lossless?

YES!

Given a non-trivial FD $X \rightarrow Y$ in \mathcal{F}^+ with $XY \subseteq R$, where X is not a super key of R, we need to prove:

Let Z =Attribute (R) - X - Y

- Anything we project always comes back in the join: $R \subseteq (\pi_{XY}R) \bowtie (\pi_{XZ}R)$
 - Sure; and it doesn't depend on the FD
- Anything that comes back in the join must be in the original relation:

 $R \supseteq (\pi_{XY}R) \bowtie (\pi_{XZ}R)$

• Proof uses the fact that $X \to Y$

Is BCNF dependency-preserving?

- NO!
- Consider a simple example R under \mathcal{F} :

Outline for Today

- Functional Dependencies
- Decomposition:
 - Lossless
 - Dependency-preserving
- Boyce-Codd Normal Form (BCNF)
 - Lossless decomposition
 - Not necessarily dependency-preserving decomposition
- Third Normal Form (3NF)
 - Lossless decomposition
 - Dependency-preserving decomposition

Third normal form (3NF)

- A relation R is in 3NF under \mathcal{F} if each FD $X \rightarrow Y \in \mathcal{F}^+$ with $XY \subseteq R$ satisfies:
 - either $X \to Y$ is trivial, i.e., $Y \subseteq X$,
 - or X is a super key of R, i.e., $X \rightarrow R$ or,
 - or each attribute in Y X is in a key of R

BCNF only allows the first two cases, so 3NF is looser than BCNF

- Is $R = \{A, B, C\}$ under \mathcal{F} in 3NF?
 - A, $B \rightarrow C$ is satisfied since AB is a super key
 - $C \rightarrow B$ is satisfied since B is part of key $\{A, B\}$

 \mathcal{F} includes: $A, B \rightarrow C$ $C \rightarrow B$

Compute 3NF decomposition

- Step 1: Finding the minimal cover of the FD set ${\mathcal F}$

- Given a set of FDs \mathcal{F} , we say \mathcal{F}' is equivalent to \mathcal{F} if their closures are the same, i.e., $\mathcal{F}^+ = \mathcal{F}'^+$.
- The smallest equivalent set of FDs
- Step 2: Decompose based on the minimal cover

Minimal cover of $\mathcal F$

A set of FDs $\mathcal F$ is minimal if

- every RHS of a FD in ${\mathcal F}$ is a single attribute

 Consider R = {sno, sname, city, pno, pname, price, ptype} under a set F of FDs

Minimal cover of $\mathcal F$

A set of FDs $\mathcal F$ is minimal if

- every RHS of a FD in ${\mathcal F}$ is a single attribute
- No FD $X \to A$ with $Z \subseteq X$ such that $(\mathcal{F} - \{X \to A\} + \{Z \to A\})^+ = \mathcal{F}^+$

How to check efficiently? if A is in the attribute closure of Z under \mathcal{F}

No redundant attributes in *X*

• Consider $R = \{$ sno, sname, city, pno, pname, price, ptype $\}$ under a set \mathcal{F} of FDs

 \mathcal{F} includes: $sno \rightarrow sname, city$ $pno \rightarrow pname$ $sno, pno \rightarrow price$ $sno, pname \rightarrow price$ $pno, pname \rightarrow ptype$

Fail condition 2: removing pname since pno \rightarrow pname and pno \rightarrow ptype together imply it

Minimal cover of $\mathcal F$

A set of FDs \mathcal{F} is minimal if

- every RHS of a FD in \mathcal{F} is a single attribute
- No FD $X \to A$ with $Z \subseteq X$ such that $(\mathcal{F} - \{X \to A\}) + \{Z \to A\})^+ = \mathcal{F}^+$
- No FD $X \to A$ such that $(\mathcal{F} \{X \to A\})^+ = \mathcal{F}^+$

Fail condition 3: pno \rightarrow pname and sno, pname \rightarrow price can imply it

 \mathcal{F} includes:

sno \rightarrow sname, city

How to check efficiently?

if A is in the attribute closure

of X under $\mathcal{F} - \{X \to A\}$

No redundant

FD in \mathcal{F}

- pno \rightarrow pname
- sno, pno \rightarrow price
 - sno, pname \rightarrow price
 - pno, pname \rightarrow ptype

Compute minimal cover of $\mathcal F$

Repeat the following steps until ${\mathcal F}$ does not change

- Step 1: Replace $X \rightarrow YZ$ with $X \rightarrow Y$ and $X \rightarrow Z$
- Step 2: Remove *B* from the LHS of $X \rightarrow A$ if *A* is in the attribute closure of $X \{B\}$ under \mathcal{F}
- Step 3: Remove $X \to A$ if A is in the attribute closure of X under $\mathcal{F} \{X \to A\}$

Why equivalent set of FDs?

Example of minimal cover

• Consider $R = \{sno, sname, city, pno, pname, price, ptype\}$ under a set \mathcal{F} of FDs

 \mathcal{F} includes: $sno \rightarrow sname, city$ $pno \rightarrow pname$ $sno, pno \rightarrow price$ $sno, pname \rightarrow price$ $pno, pname \rightarrow ptype$

 \mathcal{F}^* includes: $sno \rightarrow sname$ $sno \rightarrow city$ $pno \rightarrow pname$ $sno, pname \rightarrow price$ $pno \rightarrow ptype$ Remove it as it is implied by pno \rightarrow pname and sno, pname \rightarrow price

Split it into sno \rightarrow sname and sno \rightarrow city

Update it by pno \rightarrow ptype as it is implied by pno \rightarrow pname and pno \rightarrow ptype

Compute 3NF decomposition

Given a relation R with a set \mathcal{F} of FDs:

Step 1: Find a minimal cover \mathcal{F}^* for \mathcal{F}

Step 2: For every $X \to Y$ in \mathcal{F}^* , add a relation {X, Y} to the decomposition

Step 3: If no relation contains a key for R, add a relation containing an arbitrary key for R to the decomposition

Example for 3NF decomposition

 Consider R = {sno, sname, city, pno, pname, price, ptype} under a set F of FDs

${\mathcal F}$ includes:

sno \rightarrow sname, city pno \rightarrow pname sno, pno \rightarrow price sno, pname \rightarrow price pno, pname \rightarrow ptype

\mathcal{F}^* includes:

 $sno \rightarrow sname$ $sno \rightarrow city$ $pno \rightarrow pname$ $sno, pname \rightarrow price$ $pno \rightarrow ptype$

R_1 (sno, sname) R_2 (sno, city)	(Optional) possible optimization: combine R ₁ and R ₂	
R_3 (pno, pname) R_4 (sno, pname, p R_5 (pno, ptype)	orice)	
R ₆ (sno, pno)	Add th	e key (sno,pno)
		a Lastura 11)

(See Lecture 11) How to determine if K is or is not a key of R?

Summary (this week)

- Functional dependencies: provide clues towards the elimination of (some) redundancies in a schema
 - Armstrong's axioms
 - Closure of FDs
 - Closure of attributes
- Decomposition (this lecture):
 - BCNF: lossless (but not necessarily dependencypreserving)
 - 3NF: lossless and dependency-preserving (but with more redundancy)

Where are we now?

- Overview (Lecture 1)
- Relational data model and Relational Algebra (Lectures 2 - 3)
- SQL (Lectures 4 8)
- Database Design (Lectures 9 12)
- Database Internals
 - Storage & Indexing (Lectures 13 15)
 - Query Processing & Optimization (Lectures 16 18)
 - Transactions (Lectures 19 20)

What's next?

• Midterm Review

