
Lecture 12: 
Database Design 

(Theory)
CS348 Spring 2025:

Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003



Announcements

• Appealing of Assignment 1
• Check remark request guidelines on Piazza
• Reach out to corresponding TA, IA (Guy), ISC (Sylvie)
• Check sample solutions on Learn

• Milestone 1 of Group Project
• Due on June 19

• Switch-type cut-off for assessment
• Due on June 19

• Assignment 2
• Coverage: Lecture 4 - Lecture 12
• Check online office hours on Piazza
• Due on June 24
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(Recap) Data Redundancy!

• Possible Design: one large table InstructorDep with 
one row for each instructor

• Decomposition: Break down a complex database 
schema into smaller, more manageable pieces
while maintaining data integrity and relationships
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instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000



(Recap) Decompositions

• 𝑅	 is decomposed into 𝑅" and 𝑅#
• Attribute (𝑅!) ∪ Attribute(𝑅") = Attribute (𝑅)
• 𝑅! and 𝑅" are the projections of 𝑅 onto Attribute (𝑅!) and 

Attribute(𝑅")

• Any decomposition gives 𝑅 ⊆ 𝑅" ⋈ 𝑅#
• Lossless decomposition if 𝑅 = 𝑅! ⋈ 𝑅"
• Lossy decomposition if 𝑅 ⊂ 𝑅! ⋈ 𝑅"
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A1 A2 A3

… … …

A3 A4

… …

A1 A2 A3 A4

… … … …

𝑅

𝑅! 𝑅"

For any
tuple	(𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝑅,
(𝑎, 𝑏, 𝑐) ∈ 𝑅! and
(𝑐, 𝑑) ∈ 𝑅";

then (𝑎, 𝑏, 𝑐)⋈
𝑐, 𝑑 ∈ 𝑅! ⋈ 𝑅"



(Recap) A good decomposition
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instructorID name salary depName

111 Alice 5000 CS

222 Bob 4000 Physics

333 Carl 5200 CS

444 Diana 5500 CS

depName bldng budget

CS DC 20000

Physics PHY 30000

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

⋈

Why can we recover all 
original tuples by joins?



(Recap) A bad decomposition
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instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

instructorID

111

222

333

444

name

Alice

Bob

Carl

Diana

salary

5000

4000

5200

5500

depName

CS

Physics

bldng

DC

PHY

budget

20000

30000⋈ ⋈ ⋈ ⋈ ⋈

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

111 Bob 5200 CS PHY 30000

… … … … … …

Lossy? But I got more 
rows! Can’t tell what’s 
fact and what’s not, so 
we lose information!



Outline for Today

• Functional Dependencies 
• Decomposition:
• Lossless
• Dependency-preserving

• Boyce-Codd Normal Form (BCNF)
• Third Normal Form (3NF)
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Lossless decomposition

• We should be able to reconstruct the instance of 
the original table from the instances of the tables in 
the decomposition
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A decomposition {𝑅", 𝑅#} of 𝑅 is lossless if and only if
the common attributes of 𝑅" and 𝑅# form a superkey
for either schema, i.e.,	𝑅"∩ 𝑅# → 𝑅" or 𝑅" ∩ 𝑅# → 𝑅#

(See Lecture 11)
If 𝑋	is a superkey of 𝑅, then 𝑋 → 𝑅



Is this a lossless decomposition? 

• Consider 𝑅 = {sno, sname, city, pno, pname, price} and a 
decomposition (𝑅", 𝑅#) below: 

𝑅" =	{sno, sname, pname}
𝑅# = {pname, city, pno, price} 
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Lossy since 
𝑅! ∩ 𝑅" =

{pname} is not a 
superkey of 

either 𝑅! or 𝑅"

sno sname city pno pname price

S1 Apple K-W P1 A $25

S1 Apple K-W P2 B $34

S2 BestBuy London P3 A $5

S2 BestBuy London … … …



Which one is better?

• Consider Company = {project, department, division} 
under a set ℱ of FDs, and two different
decompositions: 

decomposition 1:   decomposition 2: 

• Both are lossless. (Why?)
• However, testing FDs is easier on one of them. (Which?)

10ℱ includes:
project → department
department → division
project → division

𝑅! = project, department
𝑅" = department, division

𝑅! = project, department
𝑅" = project, division



Testing FDs 

• Consider Company = {project, department, division} 
under a set ℱ of FDs, and two different 
decompositions: 

decomposition 1:   decomposition 2: 

11ℱ includes:
project → department
department → division
Project → division

𝑅! = project, department
𝑅" = department, division

𝑅! = project, department
𝑅" = project, division

project → department 
department → division 
project → division

test in 𝑅!

test in 𝑅"

No need to test 
since it is implied by 
the other two FDs

project → department 
department → division 
project → division

test in 𝑅!

test in 𝑅"

cross-tables!



Dependency-preserving decomposition

• We should be able to (explicitly and implicitly) test 
all dependencies in each base table of the 
decomposition

• Given a set of FDs ℱ, we say ℱ′ is equivalent to ℱ if 
their closures are the same, i.e., ℱ* = ℱ+*.
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Given a schema 𝑅 and a set ℱ	of FDs, 
a decomposition of 𝑅 is dependency preserving 

if there is an equivalent set ℱ′of FDs to ℱ, 
none FD in ℱ′	is cross-table in the decomposition. 



Outline for Today

• Functional Dependencies 
• Decomposition:
• Lossless
• Dependency-preserving

• Boyce-Codd Normal Form (BCNF)
• Third Normal Form (3NF)
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Boyce-Codd Normal Form (BCNF)

• A relation 𝑅 is in BCNF under ℱ	if each FD 𝑋 → 𝑌 
∈ ℱ* with 𝑋𝑌 ⊆ 𝑅 satisfies: 
• either 𝑋 → 𝑌 is trivial, i.e., 𝑌 ⊆ 𝑋
• or 𝑋 is a super key of 𝑅, i.e., 𝑋 → 𝑅

• Is 𝑅 = sno, sname, city, pno, pname, price  under
ℱ in BCNF?
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ℱ includes:
sno → sname, city
pno → pname
sno, pno → price

(See Lecture 11)
How to determine if K is a 

superkey of R?



Compute BCNF decomposition

Repeat the following until all relations are in BCNF

• Step 1: Find a BCNF violation
• A relation 𝑅 in the decomposition
• A non-trivial FD 𝑋 → 𝑌 in ℱ. with 𝑋𝑌 ⊆ 𝑅, where 𝑋 is not a 

super key of 𝑅

• Step 2: Decompose 𝑅 into 𝑅" and 𝑅#
• 𝑅! has attributes 𝑋 ∪ 𝑌; 
• 𝑅" has attributes 𝑋 ∪ 𝑍, where 𝑍 contains all attributes of 𝑅 

that are in neither 𝑋 nor 𝑌
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Example of BCNF decomposition
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𝑅 = sno, sname, city, pno, pname, price

R2= sno,	pno, pname, price

BCNF violation: sno →  sname, city

R1 = sno, sname, city

sno →  sname, cityBCNF violation: pno →  pname

R3= pno, sno, price R4 = pno,	pname

pno → pnamesno, pno →  price

pno → pname
sno, pno → price

ℱ includes:
sno → sname, city
pno → pname
sno, pno → price

(See Lecture 11)
How to determine if K is a 

superkey of R?

In BCNF In BCNF 

In BCNF 



BCNF helps remove redundancy

sno sname city pno pname price

S1 Apple K-W P1 A $25

S1 Apple K-W P2 B $34

S1 Apple K-W P3 A $20

S2 BBuy London … … …
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sno sname city

S1 Apple K-W

S2 BBuy London

.. … …

sno pno pname price

S1 P1 A $25

S1 P2 B $34

S1 P3 A $20

S2 … … …

BCNF violation: sno →  sname, city

ℱ includes:
sno → sname, city
pno → pname
sno, pno → price



Another example
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UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
BCNF violation: uid → uname, twitterid

User (uid, uname, twitterid) Member (uid, gid, fromDate)

In BCNF (why?) 
In BCNF (why?)

uid → uname, twitterid
twitterid → uid

uid, gid → fromDate

ℱ includes:
       uid → uname, twitterid
       twitterid → uid
       uid, gid → fromDate



An alternative
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UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: twitterid → uid

UserID (twitterid, uid)

Member (twitterid, gid, fromDate)

In BCNF

In BCNF

twitterid → uname
twitterid, gid → fromDate

UserJoinsGroup (twitterid, uname, gid, fromDate)

UserName (twitterid, uname)
In BCNF

twitterid → uid

No FDs in ℱ violate BCNF 
here. But we need to 

check all the FDs  in ℱ# !!

ℱ includes:
       uid → uname, twitterid
       twitterid → uid
       uid, gid → fromDate

BCNF violation: twitterid → uname

(See Lecture 11)
What is closure of ℱ?



Is BCNF lossless? 

YES!
Given a non-trivial FD 𝑋 → 𝑌 in ℱ* with 𝑋𝑌 ⊆ 𝑅,
where 𝑋 is not a super key of 𝑅, we need to prove:
Let 𝑍 = Attribute (𝑅)−𝑋 − 𝑌
• Anything we project always comes back in the join:

𝑅 ⊆ 𝜋,-𝑅 ⋈ 𝜋,.𝑅
• Sure; and it doesn’t depend on the FD

• Anything that comes back in the join must be in the 
original relation:

𝑅 ⊇ 𝜋,-𝑅 ⋈ 𝜋,.𝑅
• Proof uses the fact that 𝑋 → 𝑌

20



Is BCNF dependency-preserving? 

• NO!
• Consider a simple example 𝑅 under ℱ : 
    𝑅 = {A, B, C} 
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ℱ	includes: 
A, B → C
C → B  

𝑅! =	{A, C} 𝑅" = {C, B} 

A, B → C is cross-table and 
cannot be tested directly

BCNF violation: C → B  

In BCNF since 
no FD in ℱ# only 

contain A, C   
 

In BCNF since
C → B  

 



Outline for Today

• Functional Dependencies 
• Decomposition:
• Lossless
• Dependency-preserving

• Boyce-Codd Normal Form (BCNF)
• Lossless decomposition
• Not necessarily dependency-preserving decomposition

• Third Normal Form (3NF)
• Lossless decomposition
• Dependency-preserving decomposition
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Third normal form (3NF)

• A relation 𝑅 is in 3NF under ℱ if each FD 𝑋 → 𝑌 ∈ 
ℱ* with 𝑋𝑌 ⊆ 𝑅 satisfies: 
• either 𝑋 → 𝑌 is trivial, i.e., 𝑌 ⊆ 𝑋, 
• or 𝑋 is a super key of 𝑅, i.e., 𝑋 → 𝑅 or, 
• or each attribute in 𝑌 − 𝑋 is in a key of 𝑅

• Is 𝑅 = {A, B, C} under ℱ in 3NF?
• A, B → C is satisfied since AB is a super key
• C → B is satisfied since B is part of key {A, B}
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BCNF only 
allows the first 
two cases, so 
3NF is looser 

than BCNF

ℱ	includes: 
A, B → C
C → B  



Compute 3NF decomposition

• Step 1: Finding the minimal cover of the FD set ℱ

• Given a set of FDs ℱ, we say ℱ′ is equivalent to ℱ if their 
closures are the same, i.e., ℱ. = ℱ1..
• The smallest equivalent set of FDs

• Step 2: Decompose based on the minimal cover
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ℱ ℱ#
ℱ′ ℱ′#=



Minimal cover of ℱ
A set of FDs ℱ is minimal if
• every RHS of a FD in ℱ is a single attribute

• Consider 𝑅 = {
}

sno, sname, city, pno, pname, price,
ptype  under a set ℱ of FDs

25

ℱ	includes: 
sno → sname, city
pno →  pname
sno, pno →  price
sno, pname →  price   
sno, pname →  ptype   

Fail condition 1



Minimal cover of ℱ
A set of FDs ℱ is minimal if
• every RHS of a FD in ℱ is a single attribute
• No FD 𝑋 → 𝐴 with 𝑍 ⊆ 𝑋 such that 

ℱ − 𝑋 → 𝐴 + 𝑍 → 𝐴 . = ℱ.

• Consider 𝑅 = {
}

sno, sname, city, pno, pname, price,
ptype  under a set ℱ of FDs
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No redundant 
attributes in 𝑋

ℱ	includes: 
sno → sname, city
pno →  pname
sno, pno →  price
sno, pname →  price   
pno, pname →  ptype   

Fail condition 2: removing pname
since pno →  pname

and pno →  ptype together imply it

How to check efficiently?
if 𝐴 is in the attribute 
closure of 𝑍	under ℱ	



Minimal cover of ℱ
A set of FDs ℱ is minimal if
• every RHS of a FD in ℱ is a single attribute
• No FD 𝑋 → 𝐴 with 𝑍 ⊆ 𝑋 such that 

ℱ − 𝑋 → 𝐴 + 𝑍 → 𝐴 . = ℱ.

• No FD 𝑋 → 𝐴 such that ℱ − 𝑋 → 𝐴 . = ℱ.

• Consider 𝑅 = {
}

sno, sname, city, pno, pname, price,
ptype  under a set ℱ of FDs
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No redundant 
FD in ℱ

ℱ	includes: 
sno → sname, city
pno →  pname
sno, pno →  price
sno, pname →  price   
pno, pname →  ptype   

Fail condition 3: pno →  pname
and sno, pname →  price   

can imply it

How to check efficiently?
if 𝐴 is in the attribute closure 

of 𝑋 under ℱ − 𝑋 → 𝐴



Compute minimal cover of ℱ
Repeat the following steps until ℱ does not change

• Step 1: Replace 𝑋 → 𝑌𝑍 with 𝑋 → 𝑌 and 𝑋 → 𝑍

• Step 2: Remove 𝐵 from the LHS of 𝑋 → 𝐴 if 𝐴 is in 
the attribute closure of 𝑋 − 𝐵 	under ℱ	

• Step 3: Remove 𝑋 → 𝐴 if 𝐴 is in the attribute closure 
of 𝑋 under ℱ − 𝑋 → 𝐴
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Why equivalent set of FDs?



Example of minimal cover

• Consider 𝑅 = {
}

sno, sname, city, pno, pname, price,
ptype  under a set ℱ of FDs
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ℱ∗ includes:
sno → sname
sno → city
pno →  pname
sno, pname →  price   
pno →  ptype   

ℱ	includes: 
sno → sname, city
pno →  pname
sno, pno →  price
sno, pname →  price   
pno, pname →  ptype   

Split it into sno → sname and sno → city

Remove it 
as it is implied by pno → pname

and sno, pname → price   

Update it by pno →  ptype   
as it is implied by pno → pname

and pno → ptype 



Compute 3NF decomposition 

Given a relation 𝑅 with a set ℱ of FDs:

Step 1: Find a minimal cover ℱ∗ for ℱ

Step 2: For every 𝑋 → 𝑌 in ℱ∗ , add a relation {X, Y} to 
the decomposition 

Step 3: If no relation contains a key for 𝑅, add a 
relation containing an arbitrary key for 𝑅 to the 
decomposition 
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Example for 3NF decomposition
• Consider 𝑅 = {

}
sno, sname, city, pno, pname, price,

ptype  under a set ℱ of FDs
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𝑅! (sno, sname)
𝑅" (sno, city)
𝑅% (pno, pname)
𝑅& (sno, pname, price)
𝑅' (pno, ptype)

𝑅( (sno, pno) Add the key (sno,pno)

(Optional) possible
optimization:

combine 𝑅! and 𝑅"

ℱ∗ includes:
sno → sname
sno → city
pno →  pname
sno, pname →  price   
pno →  ptype   

ℱ	includes: 
sno → sname, city
pno →  pname
sno, pno →  price
sno, pname →  price   
pno, pname →  ptype   

(See Lecture 11)
How to determine if K 
is or is not a key of R?



Summary (this week)

• Functional dependencies: provide clues towards 
the elimination of (some) redundancies in a schema
• Armstrong’s axioms
• Closure of FDs 
• Closure of attributes

• Decomposition (this lecture):
• BCNF: lossless (but not necessarily dependency-

preserving)
• 3NF: lossless and dependency-preserving (but with more 

redundancy)
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Where are we now?

• Overview (Lecture 1)
• Relational data model and Relational Algebra 

(Lectures 2 - 3)
• SQL (Lectures 4 - 8)
• Database Design (Lectures 9 - 12)

• Database Internals
• Storage & Indexing (Lectures 13 - 15)
• Query Processing & Optimization (Lectures 16 - 18)
• Transactions (Lectures 19 - 20)
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What’s next?

• Midterm Review
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