Lecture 14:
Indexing

CS348 Spring 2025:
Introduction to Database Management

Guest Lecture: Chao Zhang
Sections: 001, 002, 003

Announcements

* Due today!

Outline

* Types of indexes
* Index structure

* How to use index

What are indexes for?

* Given a value, locate the record(s) with this value
SELECT * FROM R WHERE
SELECT * FROM R, S WHERE

)

* Find data by other search criteria, e.g. range search
SELECT * FROM R WHERE

)

* We call Ain the above example a
 The attribute whose values will be indexed

Dense v.s. Sparse indexes

: one index entry for each search key value

* One entry may “point” to multiple records (e.g.,
two users named Jessica)

123 Milhouse 10 0.2 Bart
142 Bart 10 0.9 Jessica
279 Jessica 10 0.9 Lisa
345 Martin 8 2.3 Martin
456 Ralph 8 0.3 Milhouse
512 Nelson 10 0.4 Nelson
679 Sherri 10 0.6 Ralph
697 Terri 10 0.6 Sherri

Terri
857 Lisa 8 0.7

Windel
912 Windel 8 0.5

997 Jessica 8 0.5

Dense v.s. Sparse indexes

* Sparse: one index entry for each block

* Records must be clustered according to the search
key on the disk

Sparse index
on uid

Dense index
on name

Dense v.s. Sparse indexes

* Dense: one index entry for each search key value
* Sparse: one index entry for each block

* Records must be clustered according to the search key

Easier to / May not fit
update into memory

Sparse index
on uid

Must be clustered

Dense index
on name

Clustering v.s. Non-Clustering indexes

* An index on attribute Ais a clustering index if
tuples with similar A-values are stored together in
the same block, and non-clustering otherwise.

A relation may have at
most one clustering
index, and any number
of non-clustering indices.

Sparse index
on uid

A clustering index

) A non-clusterin
on uid g

Denseindex index on name
on name

Primary v.s. Secondary indexes

* Typically created for the of a table
* Records are usually clustered by the primary key
* Clustering index, so sparse

* Non-clustering index, usually dense (why?)

(Recap) Indexes in SQL

* PRIMARY KEY declaration automatically creates a
primary index

* UNIQUE key declaration automatically creates a
secondary index

* Additional secondary index can be created on non-
key attribute(s)

UserPopindex ON User(pop)

Outline

* Types of indexes
* Sparse v.s. dense
* Clustering v.s. non-clustering
* Primary v.s. secondary

* Index structure
e [ISAM
* B-tree

* How to use index

ISAM

* What if an index is still too big?
 Put a another (sparse) index on top of that!
), more or less

(

Example: look up 197

Index blocks

100, 200, ..., 901

2z

N

100, 123, ..., 192

200, ...

/

100, 108,
119,121

123, 129,

192, 197,

200, 202,

Data blocks

901, ...,

996

901, 907,

996, 997,

Updates with ISAM

100, 200, ..., 901

Z. N

Example: delete 129

Index blocks 100, 123, ..., 192 200, ... 901, ..., 996

Z, Z.

100, 108, 192, 197, 200, 202, 901, 907, 996, 997,
119 121
107 Data blocks

* Overflow chains and empty data blocks degrade
performance

* Worst case: most records go into one long chain, so
lookups require scanning all data!

Bf-tree

: good performance guarantee

081
0sT

: one node per block; large fan-out

00¢]
08T

YAR
9ST:
0ST:

Ny

P

i

i

'y

R

Sample B*-tree nodes

to keys
100 < k
S B ®
— v
to keys to keys to keys to keys

100 <k <120 120<k <150 150<k <180 180<k

to records with these k values;
or, store records directly in leaves

130
N

120

'|-> to next leaf node in sequence

B*-tree balancing properties

* Height constraint: all leaves at the same lowest level
* Fan-out constraint: all nodes at least half full

(except root)

Max # Max # Min # Min #
pointers keys active pointers keys
Non-leaf f f—1 [f/2] [f/2] — 1
Root f f—1 2 1
Leaf f f-1 1f /2] 1f /2]

Lookups

* SELECT * FROM R WHERE
* SELECT * FROM R WHERE k = 32;

Not found

’

-t 3
>

18

Range query

* SELECT * FROM R WHERE k> 32 AND k< 179;

And follow next-leaf pointers until you hit upper bound

Insertion

* Insert a record with search key value 32

o
o
i

120
150
180

Look up where the

inserted key
should go...

19

3

3
-<—1100
-«—101

o
—
—

And insert it right there

Another insertion example

* Insert a record with search key value 152

o
o
i

120
150

50’180
15¢

83 abl’ A p Rl & 8
— o - o - — N
R R

Oops, node is already full!

21

Node splitting

100

Oops, that node

o O
!
g,ooo becomes full!

More node splitting

00
156

Need to add to parent node a pointer
to the newly created node

120
150

100
101
110
1120
130
150
152

<1156
<1180

C <1200

* In the worst case, node splitting can “propagate” all the way
to the root of the tree (not illustrated here)

 Splitting the root introduces a new root of fan-out 2 and causes the tree
to grow “up’ by one level

(o))}

[

\—I
”»

P

Deletion

* Delete a record with search key value 130

Look up the key
to be deleted...

N

23

And delete it
Oops, node is too empty!

<1156
<1179 /
<1180
<1200

Stealing from a sibling

100

(o}
LN
Remember to fix the key m

in the least common ancestor
of the affected nodes

O +H O o o o O o O
O O AN N wn N~ o0 O
o o — = — A

Another deletion example

* Delete a record with search key value 179

o
o
i

120
156

6 ’ 180

B
H '}

1100
-—1101
-—1110
1120
-1 150
<1180
<1200

Cannot steal from siblings
Then coalesce (merge) with a sibling!

Coalescing

Remember to delete the
appropriate key from parent

* Deletion can “propagate” all the way up to the root of the
tree (not illustrated here)

* When the root becomes empty, the tree “shrinks” by one level

Performance analysis of B*-tree

* How many I/O’s are required for each operation?
* h, the
* Plus one or two to manipulate actual records
* Plus O(h) for reorganization (rareif f is large)
* Minus one if we cache the root in memory

* How big is h?
* Roughly logfanout N, where N is the number of records

* Fan-out is typically large (in hundreds)—many keys and
pointers can fit into one block

* A 4-level B*-tree is enough for “typical” tables

B*-tree in practice

* Complex reorganization for deletion often is not
implemented (e.g., Oracle)

* Leave nodes less than half full and periodically
reorganize

e Most commercial DBMS use B*-tree instead of
because B*-tree handles
range queries

B*-tree versus ISAM

* |ISAM is more ; B*-tree is more

* ISAM can be more compact (at least initially)
 Fewer levels and 1/O’s than B*-tree

* Overtime, ISAM may not be balanced
* Cannot provide guaranteed performance as B*-tree does

B*-tree versus B-tree

* B-tree: why not store records (or record pointers)
in non-leaf nodes?

* These records can be accessed with fewer 1/O’s

* Problems?

* Storing more data in a node decreases fan-out and
increases h requiring more 1/O on average

* Deletions are hard since search keys cannot be repeated
* Range queries can become less efficient

Outline

* Hashing

* How to use index

