
Lecture 15:
Indexing

CS348 Spring 2025:
Introduction to Database Management

Guest Lecture: Chao Zhang
Sections: 001, 002, 003

Announcements

• Assignment 3 released on Learn

• Midterm exam tomorrow!
• Time: 4:30 PM – 6:00 PM
• Location: M3 1006 and STC 0040 (check your room)
• Coverage: Lectures 1 – 12
• Content: relational model and relational algebra, SQL,

database design
• See the midterm-review lecture

• No class on next Tue, July 1 (Canada day)!

2

Outline

• Types of indexes:
• Dense v.s. sparse
• Clustering v.s. non-clustering
• Primary v.s. secondary

• Indexing structure
• ISAM
• B+-tree
• Hashing

• How to use index

3

Static hashing
4

What if a bucket is full?

Search
key

𝒌

bucket 0

bucket 1

bucket i

bucket
n-1

ki1
ki2
ki3
…

bucket i

With record pointers
(shown below) or records

bucket i
overflow

bucket i
overflow

…

hash
function

𝒉
Bucket #

𝒉 𝒌 	𝐦𝐨𝐝	𝒏

Performance of static hashing

• Depends on the quality of the hash function
• Best (hopefully average) case: one I/O
• Worst case: all keys hashed into one bucket
• See Knuth vol. 3 for good hash functions

• Efficiency + uniformity (low collision)

• Rule of thumb: keep utilization at 50%-80%

☞How do we cope with growth?

5

Strawman solution

Rehash the whole table — using a new hash
function, or at least changing 𝑛 in mod	𝑛 to the new
number of buckets
• Entries in an old bucket may show up across many

different new buckets, causing lots of I/Os
• Cost of (re)building a giant hash table on external

storage ≈ sorting (later in this course)

☞Is it possible to reduce data movement?

6

Extensible hashing

• Idea 1: have hash function ℎ output a large number of
bits, but only use the lowest 𝑖 bits, and dynamically
increase 𝑖 as needed

• E.g., ℎ! 𝑘 = 1011, then ℎ" 𝑘 is either 01011 or 11011 ⇒
contents in one old bucket can only go to two new buckets!

• Problem: ++𝑖 doubles the number of buckets!
• Idea 2: use a directory
• Only split overflowing buckets
• But double the directory size
• Many directory entries can point to the same bucket

7

0 1 1 0 1 0 1 1ℎ 𝑘
𝑖

Extensible hashing example – 1

• Insert 𝑘 with ℎ 𝑘 = 0101
• Bucket too full? Split (next slide)
• Allowing some overflow is also fine (and sometimes

necessary)

8

0101

0
1

1000

1001
0011

1

1

1
Directory Buckets

Local
depth

Global
depth

(always the max
of local depths)

Showing hashed values here for ease
of understanding, but in reality, we
store original key values

Extensible hashing example – 2
9

1000

1001
0101

1

2

0
1

1
Directory BucketsLocal

depth
Global
depth

00112

00
01
10
11

2

Upon split:
• ++local depth, redistribute contents, and ++global

depth (double the directory size) if necessary

Each half = copy of
the original directory,
except one entry in
the second half points
to the new bucket

Extensible hashing example – 3

• Insert 1110
(no split necessary)

10

1000

1001
0101

1

2Directory

BucketsLocal
depth

Global
depth

00112

00
01
10
11

2

1110

Extensible hashing example – 4

• Insert 0000
(split, but no
 directory doubling)

11

1000
1110

1001
0101

1

2Directory

Buckets

Local
depth

Global
depth

00112

00
01
10
11

2

0000

11102

1000
0000

2

11102

Extensible hashing example - 5
12

1001
0101

2Directory

BucketsLocal
depth

Global
depth

00112

1000
0000

2

00
01
10
11

2

• Insert 0001
(split +
 directory doubling)

0001

00112

1001
0001

3

01013

000
001
010
011
100
101
110
111

3

Extensible hashing – deletions

Just the reverse of insertions
• If the bucket becomes too empty:
• Merge with “sibling” (differing only on the leading bit)

• Adjust any pointer from the directory as needed
• – – local depth
• If possible, – – global depth and half the directory

• Invariant: global depth = max of all local depths

13

Summary of extensible hashing

Pros:
• Handles growing/shrinking indexes
• No full reorganization
Cons:
• One more level of indirection through the directory
• Directory size still doubles/halves
• There are cases when doubling may not be enough

14

101100011
010000011

2
101100011

Linear hashing

• No extra indirection through a directory
• Fix the splitting/growth order
• Use some extra math to figure out the right bucket

• Grow only when utilization (avg. # entries per bucket /
max # entries per block) exceeds a given threshold

15

0000
1010

1111

𝑛: # of primary buckets (not counting overflow blocks)
𝑖 = log& 𝑛 : # of hash bits in use (global depth)
threshold = 85% (a range of the buckets may use 𝑖 − 1 bits)

𝑛 = 2, 𝑖 = 1
bucket 0 bucket 1

Local depth reflected by label, but no
need to store explicitly

Linear hashing example – 1
16

0000
1010

1111
0101

𝑛 = 2, 𝑖 = 1
bucket 0 bucket 1

Inserting 0101 exceeds threshold — grow

• Split the first bucket with the lowest depth — it’s
always the bucket 𝑛 − 2 +,-! . (0-based index)
• Often not the bucket you are inserting into!

• File grows linearly at the end (hence the name)

0000 1111
0101

𝑛 = 3, 𝑖 = 2
bucket 00 bucket 1

1010
bucket 10

Linear hashing example – 2
17

0000 1111
0101

𝑛 = 3, 𝑖 = 2
bucket 00 bucket 1

1010
bucket 10

Inserting 0001 doesn’t exceed threshold
Overflow is needed

0001

Inserting 1100 exceeds threshold — grow

1

2

1100

0000
1100

0101
0001

𝑛 = 4, 𝑖 = 2
bucket 00 bucket 01

1010
bucket 10

1111
bucket 11

Linear hashing example – 3
18

0000
1100

𝑛 = 4, 𝑖 = 2
bucket 00

1010
1110

bucket 10

Inserting 1110 exceeds threshold — grow

0101
0001

bucket 01
1111
bucket 11

0000 0101
0001

𝑛 = 5, 𝑖 = 3
bucket 000 bucket 01

1010
1110

bucket 10
1111
bucket 11

1100
bucket 100

Look up 1110
• Bucket 110 doesn’t exist, so go to bucket 10

Summary of linear hashing

Pros:
• Handles growing/shrinking indexes
• No full reorganization
• No extra level of indirection (beats extensible

hashing)
Cons:
• Still has overflow chains, and may not split them

right away because buckets must be split in
sequence

19

empty empty empty full

full

full

full

empty empty empty

• Hashing is faster on average, but the worst case
can be bad
• B+-tree’s worst-case performance guarantees rely

on fewer assumptions, and in practice these trees
are not very tall
• Hashing destroys order, but B+-trees provide

ordering and support range scans

☞We will come back to sorting vs. hashing again in
query processing

Hash indexes vs. B+-trees
20

Outline

• Types of indexes:
• Dense v.s. sparse
• Clustering v.s. non-clustering
• Primary v.s. secondary

• Indexing structure
• ISAM
• B+-tree
• Hashing

• How to use index

21

Multi-attribute indices

• Index on several attributes of the same relation.
• CREATE INDEX NameIndex ON User(LastName,FirstName);

• This index would be useful for these queries:
• select * from User where Lastname = ‘Smith’
• select * from User where Lastname = ‘Smith’ and

Firstname=‘John’

• This index would be not useful at all for this query:
• select * from User where Firstname=‘John’

22

tuples (or tuple pointers) are organized first
by Lastname. Tuples with a common lastname

are then organized by Firstname.

Index-only plan

• For example:
• SELECT firstname, pop FROM User WHERE pop > ‘0.8’

AND firstname = ‘Bob’;
• non-clustering index on (firstname, pop)

• A (non-clustered) index contains all the columns
needed to answer the query without having to
access the tuples in the base relation.
• Avoid one disk I/O per tuple
• The index is much smaller than the base relation

23

Physical design guidelines for indices

• Don’t index unless the performance increase
outweighs the update overhead

• Attributes mentioned in WHERE clauses are
candidates for index search keys

• Multi-attribute search keys should be considered
when a WHERE clause contains several conditions;
or it enables index-only plans

24

Physical design guidelines for indices

• Choose indexes that benefit as many queries as
possible

• Each relation can have at most one clustering
scheme; therefore choose it wisely
• Target important queries that would benefit the most

• Range queries benefit the most from clustering
• A multi-attribute index that enables an index-only plan

does not benefit from being clustered

25

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

• Pick a set of clustering/non-clustering indexes for
these set of queries (without worrying too much
about storage and update cost)

26
User (uid int, name string, age int, pop float)
Group (gid string, name string, date DATE)
Member (uid int, gid string)

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

27

A clustering index
on User(age)

A non-clustering index
on User(name)

User (uid int, name string, age int, pop float)
Group (gid string, name string, date DATE)
Member (uid int, gid string)

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

28

A clustering index
on User(age)

A non-clustering index
on User(name)

A non-clustering index
on User(age, pop)
à index-only plan

User (uid int, name string, age int, pop float)
Group (gid string, name string, date DATE)
Member (uid int, gid string)

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

29

A clustering index
on User(age)

A non-clustering index
on User(name)

A non-clustering index
on User(age, pop)
à index-only plan

User (uid int, name string, age int, pop float)
Group (gid string, name string, date DATE)
Member (uid int, gid string)

A clustering index
on Group(date)

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

30

A clustering index
on User(age)

A non-clustering index
on User(name)

A non-clustering index
on User(age, pop)
à index-only plan

(i) Search gid by a particular name
à Clustering/non-clustering index on Group(name)?

A join between User(uid, …,pop) ,
Member(uid,gid), Group(gid, name)

(ii) Search uid by a particular gid
à Clustering/non-clustering index on Member(gid)?

(iii) Search pop by a particular uid
à Clustering/non-clustering index on User(uid)?

Non-clustering, as we
already have a clustered
index on Group(date)
If many other queries need
a clustering index on
Group(name), we may
reconsider!

User (uid int, name string, age int, pop float)
Group (gid string, name string, date DATE)
Member (uid int, gid string)

A clustering index
on Group(date)

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

31

A clustering index
on User(age)

A non-clustering index
on User(name)

A non-clustering index
on User(age, pop)
à index-only plan

(i) Search gid by a particular name
à Non-clustering index on Group(name)

A join between User(uid, …,pop) ,
Member(uid,gid), Group(gid, name)

(ii) Search uid by a particular gid
à Clustering/non-clustering index on Member(gid)?

(iii) Search pop by a particular uid
à Clustering/non-clustering index on User(uid)?

Clustering -> all records of
the same gid are clustered

Or clustering index on
Member(gid,uid)

User (uid int, name string, age int, pop float)
Group (gid string, name string, date DATE)
Member (uid int, gid string)

A clustering index
on Group(date)

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

32

A clustering index
on User(age)

A non-clustering index
on User(name)

A non-clustering index
on User(age, pop)
à index-only plan

A clustering index
on Group(date)

A join between User(uid, …,pop) ,
Member(uid,gid), Group(gid, name)

(ii) Search uid by a particular gid
à Clustering index on Member(gid)

(iii) Search pop by a particular uid
à Clustering/non-clustering index on User(uid)?

Non-clustering, as we
already have a clustering
index on User(age)

User (uid int, name string, age int, pop float)
Group (gid string, name string, date DATE)
Member (uid int, gid string)

(i) Search gid by a particular name
à Non-clustering index on Group(name)

Or non-clustering index on
User(uid, pop) à index-only
plan, if without worrying
about storage/update cost

Summary
• Types of indexes:

• Dense v.s. sparse
• Clustering v.s. non-clustering
• Primary v.s. secondary

• Indexing structure
• ISAM
• B+-tree
• Hashing

• How to use index
• Use multi-attribute indices
• Index-only plan
• General guideline

33

What is next?

DBMS Internals:
• Storage: records, blocks, and files
• Indexing
• Query processing & optimization

34

