Lecture 16: Query Processing & Optimization

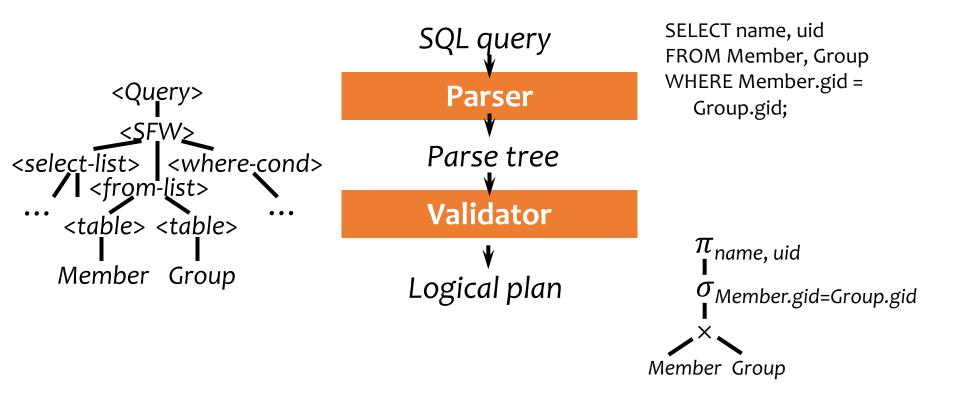
CS348 Spring 2025: Introduction to Database Management

> Instructor: **Xiao Hu** Sections: 001, 002, 003

Announcements

- Milestone 2 of group project
 - Due on July 8!

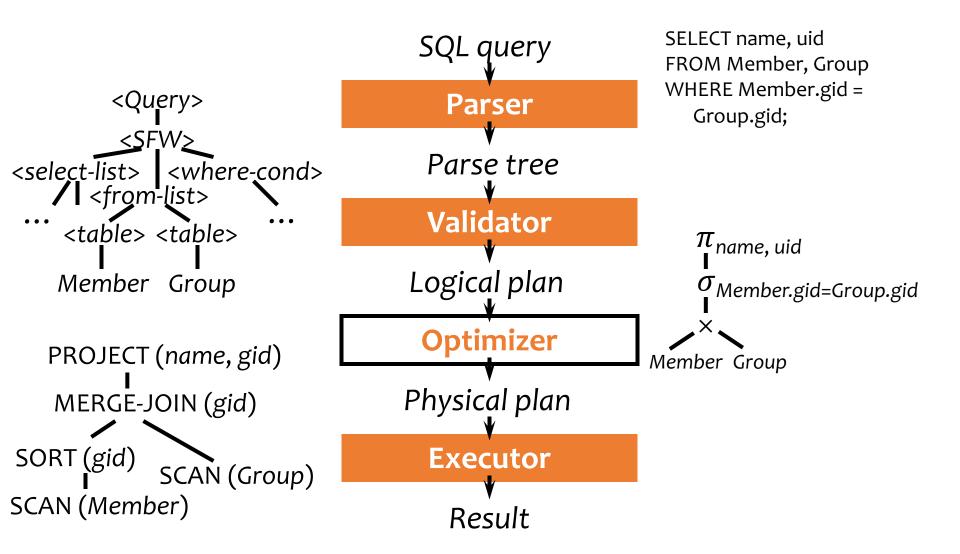
A query's trip through the DBMS



Query parsing and validation

- Parser: SQL \rightarrow parse tree
 - Detect and reject syntax errors
- Validator: parse tree \rightarrow logical plan
 - Detect and reject semantic errors
 - Nonexistent tables/views/columns?
 - Insufficient access privileges?
 - Type mismatches?
 - AVG(name), name + pop, User UNION Member
 - Expand * and views
 - Information required for semantic checking is found in system catalog (which contains all schema information)

A query's trip through the DBMS

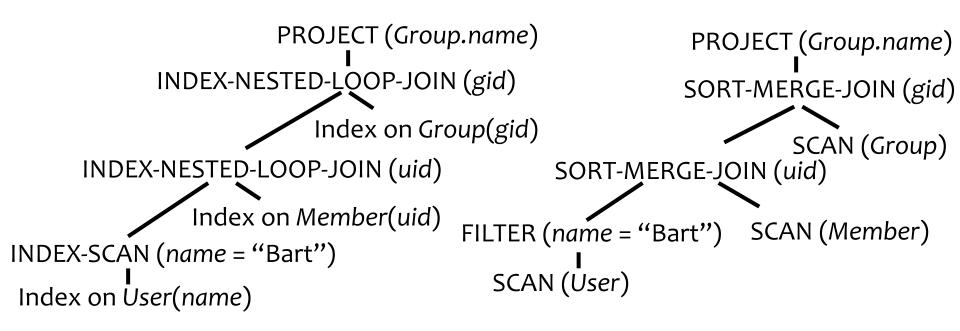


Physical plan

- A complex query may involve multiple tables and various query execution algorithms
 - E.g., table scan, basic & block nested-loop join, index nested-loop join, sort-merge join
- A physical plan for a query tells the DBMS query processor how to execute the query
 - A tree of physical plan operators
 - Each operator implements a query processing algorithm
 - Each operator accepts a number of input tables/streams and produces a single output table/stream

Examples of physical plans

SELECT Group.name FROM User, Member, Group WHERE User.name = 'Bart' AND User.uid = Member.uid AND Member.gid = Group.gid;



Many physical plans for a single query

Execution of physical plans

What is the algorithm for each operator?

How are intermediate results passed from child operators to parent operators?

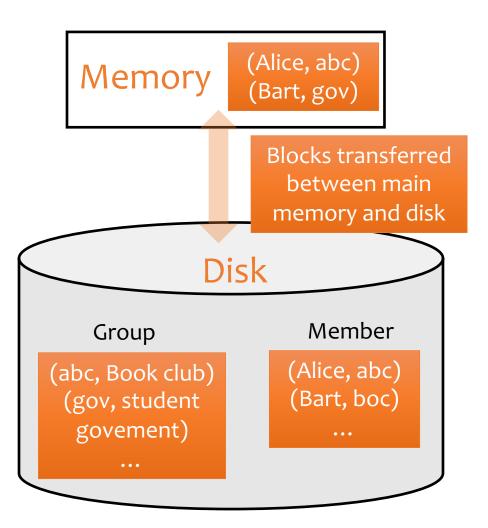
• Temporary files

http://www.dreamstime.com/royalty-free-stockimage-basement-pipelines-grey-image25917236

- Compute the tree bottom-up
- Children write intermediate results to temporary files
- Parents read temporary files
- Iterators
 - Do not materialize the intermediate result
 - Children pipeline their results to parents

Outline for Today

- Scan
- Sort
- Hash
- Index



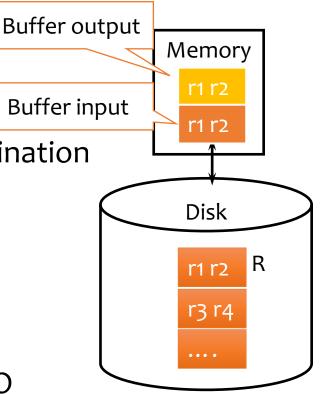
Notation and Assumption

- Relations: *R*, *S*
- Tuples: *r*, *s*
- Number of tuples: |*R*|, |*S*|
- Number of disk blocks: B(R), B(S)
- Number of memory blocks available: *M*
- Cost metric
 - Number of I/O's
 - Memory requirement
- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Consumed by subsequent operators

Scanning-based algorithms

Table scan

- Scan table R and process the query
 - Selection over R
 - Projection of R without duplicate elimination
- I/O's: <u>B(R)</u>
 - Stop early if it is a lookup by key
- Memory requirement: 2 (blocks)
 - 1 for input, 1 for buffer output
 - Increase memory does not improve I/O
- Selection, Duplication-preserving projection



Tuple-based Nested-loop join

$R \bowtie_p S$

- For each block of R, and for each r in the block:
 For each block of S, and for each s in the block:
 Output rs if p evaluates to true over r and s
- *R* is called the outer table; *S* is called the inner table
- I/O's: $B(R) + |R| \cdot B(S)$

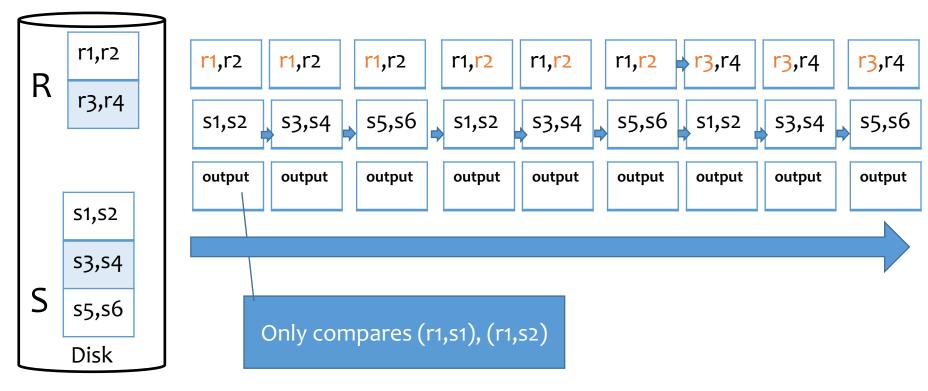
Blocks of *R* are moved into memory only once

Blocks of S are moved into memory |R| times

• Memory requirement: 3

Tuple-based nested-loop join

• one block stores two tuples, 3 blocks in memory



• Number of I/Os: B(R) + |R| * B(S) = 2 + 4 * 3 = 14

Block-based nested-loop join

$R \bowtie_p S$

- For each block of R
 For each block of S
 For each r in the R block
 For each s in the S block
 Output rs if p evaluates to true over r and s
- I/O's: $B(R) + B(R) \cdot B(S)$

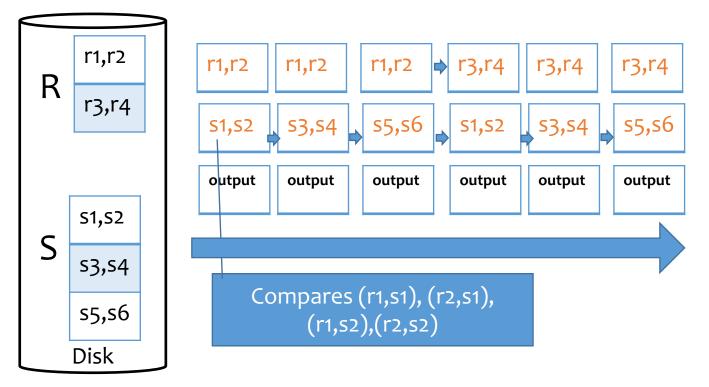
Blocks of R are moved into memory only once

Blocks of S are moved into memory B(R) times

• Memory requirement: same as before

Block-based nested loop join

• one block stores two tuples, 3 blocks in memory



• Number of I/Os: B(R) + B(R) * B(S) = 2 + 2 * 3 = 8

More improvements

- Stop early if the key of the inner table is being matched
- Make use of available memory
 - Stuff memory with as much of *R* as possible, stream *S* by, and join every *S* tuple with all *R* tuples in memory
 - I/O's: $B(R) + \left[\frac{B(R)}{M-2}\right] \cdot B(S)$
 - Or, roughly: $B(R) \cdot B(S)/M$
 - Memory requirement: *M* (as much as possible)
- Which table would you pick as the outer? (exercise)

What about nested-loop join?

- May be best if many tuples join
 - Example: non-equality joins that are not very selective
- Necessary for black-box predicates
 - Example: WHERE user_defined_pred(R.A, S.B)

Outline

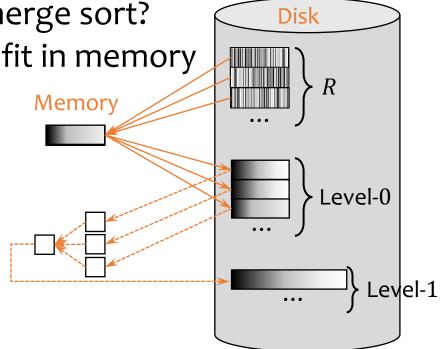
- Scan
 - Table scan
 - Selection, Duplicate-preserving projection
 - Nested-loop join
- Sort
- Hash
- Index

Sorting-based algorithms

External merge sort

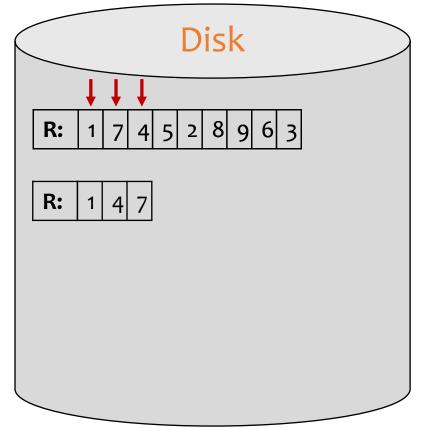
Remember (internal-memory) merge sort? Problem: sort *R*, but *R* does not fit in memory

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
- Pass 1: merge (M 1) level-0 runs at a time, and write out a level-1 run

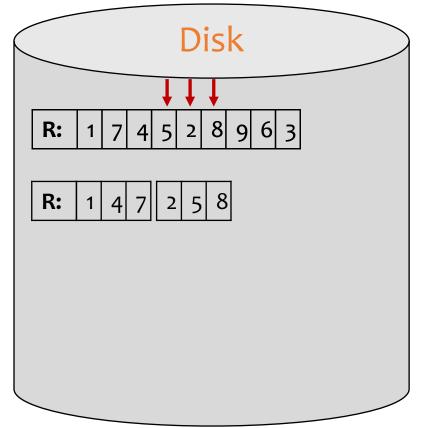


- Pass 2: merge (M 1) level-1 runs at a time, and write out a level-2 run
- Final pass produces one sorted run

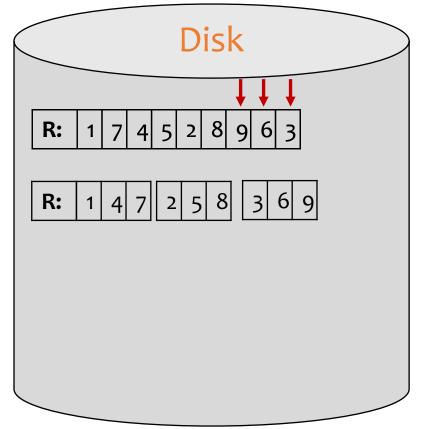
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:



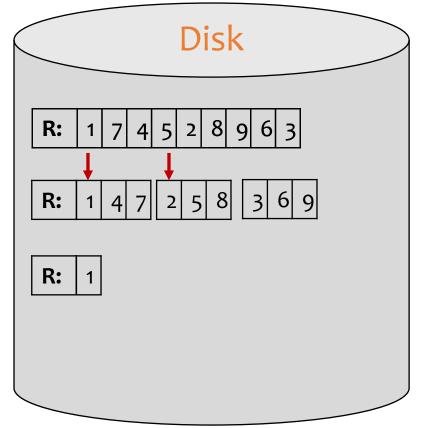
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:



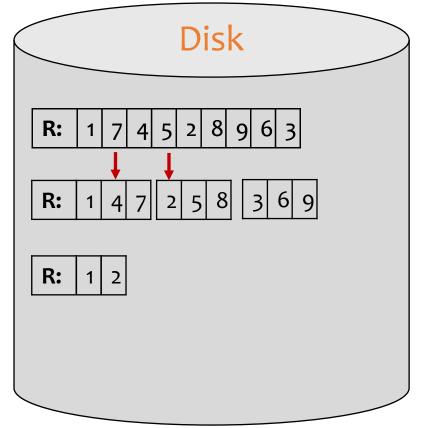
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:



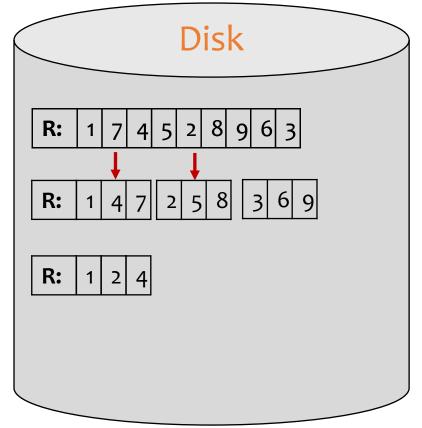
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:



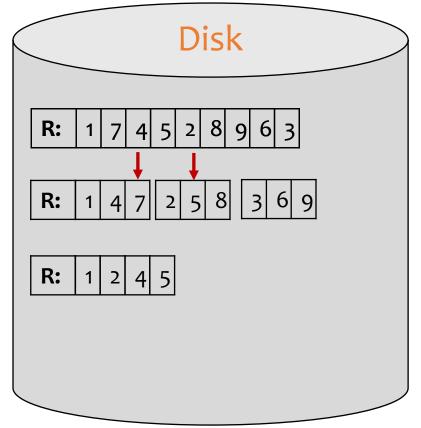
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:



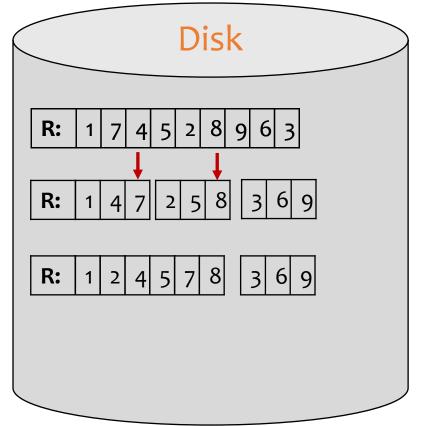
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:



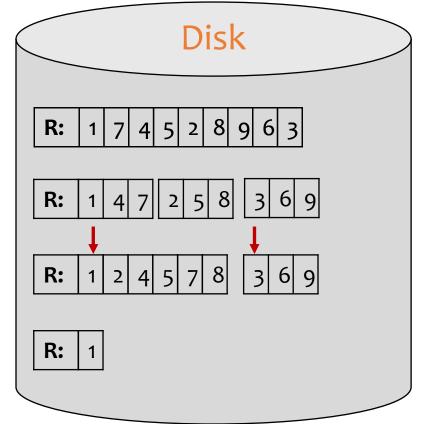
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:



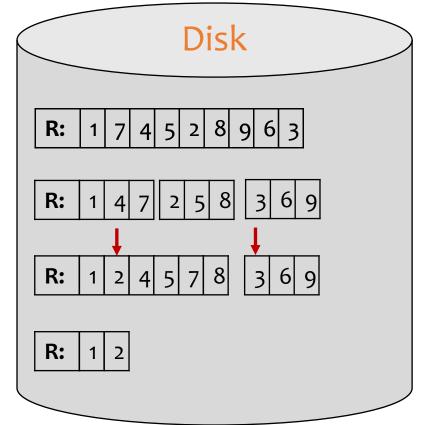
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:



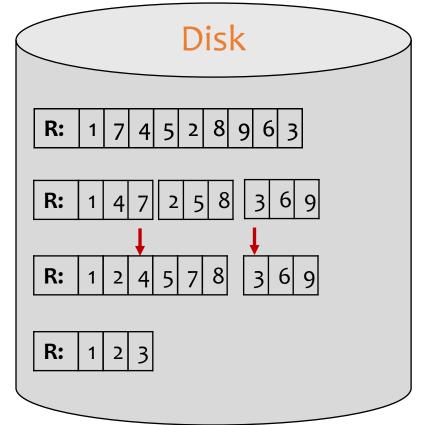
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:
- Pass 2:



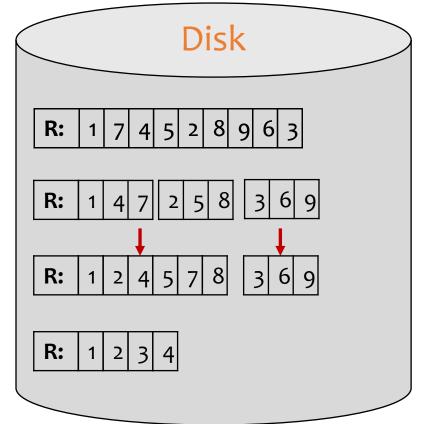
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:
- Pass 2:



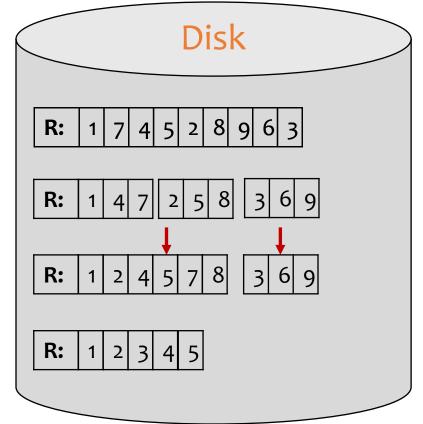
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:
- Pass 2:



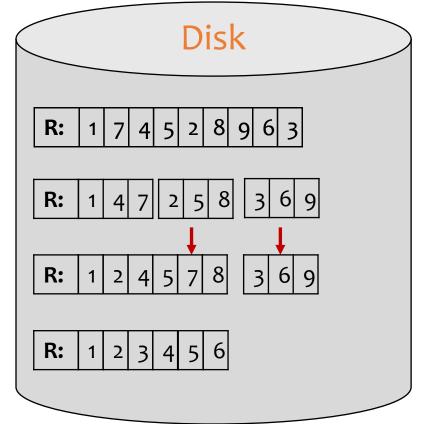
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:
- Pass 2:



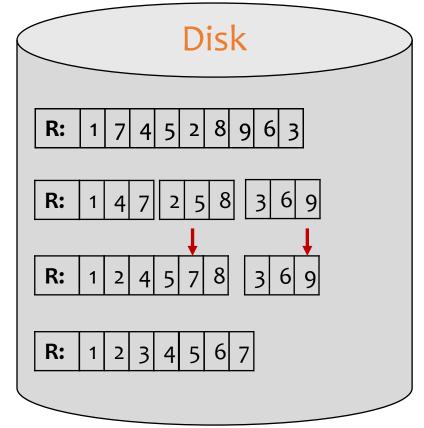
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:
- Pass 2:



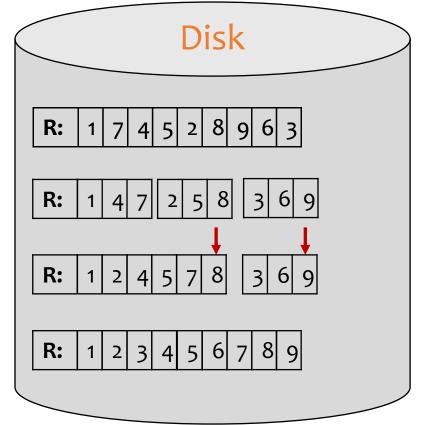
- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:
- Pass 2:



- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:
- Pass 2:



- 3 memory blocks available
- Each block holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Pass o:
- Pass 1:
- Pass 2:



Analysis

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
 - There are $\left[\frac{B(R)}{M}\right]$ level-0 sorted runs

I/O cost is $2 \cdot B(R)$

- Pass *i*: merge (M 1) level-(i 1) runs at a time, and write out a level-*i* run
 - (M 1) memory blocks for input, 1 to buffer output
 - The number of level-*i* runs = $\left[\frac{number \text{ of } \text{level} (i-1) \text{ runs}}{M-1}\right]$
 - $\log_{M-1} \left[\frac{B(R)}{M} \right]$ number of such phases
 - Final pass produces one sorted run

I/O cost is $2 \cdot B(R)$ times # of phases

Subtract B(R) for the final pass

Performance of external merge-sort

- Number of passes: $\left[\log_{M-1} \left[\frac{B(R)}{M}\right]\right] + 1$
- I/O's
 - Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
 - Subtract B(R) for the final pass
 - Roughly, this is $O(B(R) \times \log_M B(R))$
- Memory requirement: *M* (as much as possible)

Sort-merge join

$R \bowtie_{R.A=S.B} S$

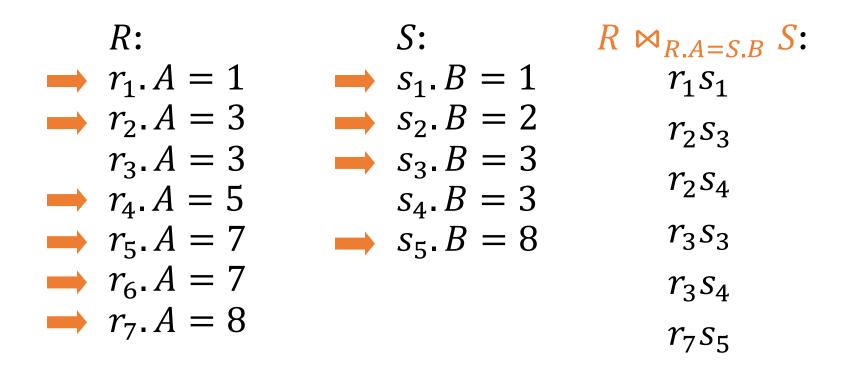
- Sort *R* and *S* by their join attributes
- $r, s \leftarrow$ the first tuples in sorted R and S
- Repeat until one of *R* and *S* is exhausted:
 - If r.A > s.B, then $s \leftarrow$ next tuple in S
 - Else if r.A < s.B, then $r \leftarrow$ next tuple in R
 - Else (r.A = s.B)

output all matching tuples;

 $r, s \leftarrow$ next tuples in R and S respectively

- If *R* is not exhausted, output remaining tuples in *R*
- If *S* is not exhausted, output remaining tuples in *S*

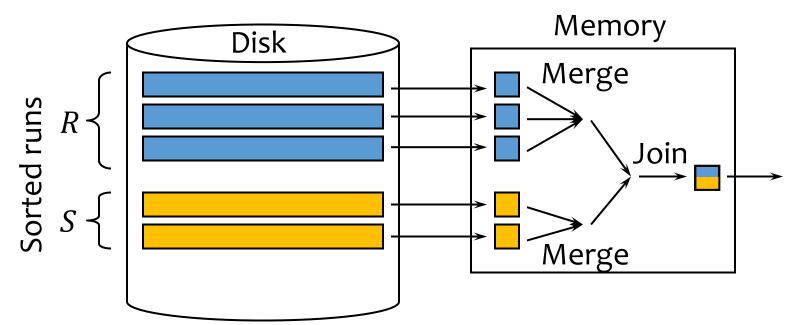
Example of merge join



- I/O's: sorting +O(B(R) + B(S))
 - In most cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins

Optimization of SMJ

- Idea: combine join with the (last) merge phase of merge-sort
 - Sort: produce sorted runs for *R* and *S* such that there are fewer than *M* of them total
 - Merge and join: merge the runs of *R*, merge the runs of *S*, and merge-join the result streams as they are generated!

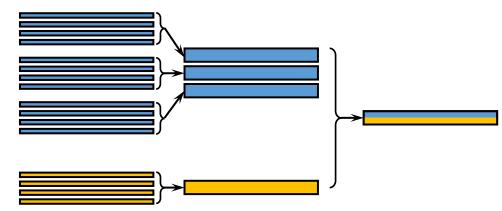


Performance of SMJ

- If SMJ completes in two passes:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - Memory requirement
 - We must have enough memory to accommodate one block from each run: $M > \left[\frac{B(R)}{M}\right] + \left[\frac{B(S)}{M}\right]$
 - Roughly $M > \sqrt{B(R) + B(S)}$

• If SMJ cannot complete in two passes:

 Repeatedly merge to reduce number of runs as necessary before final merge and join



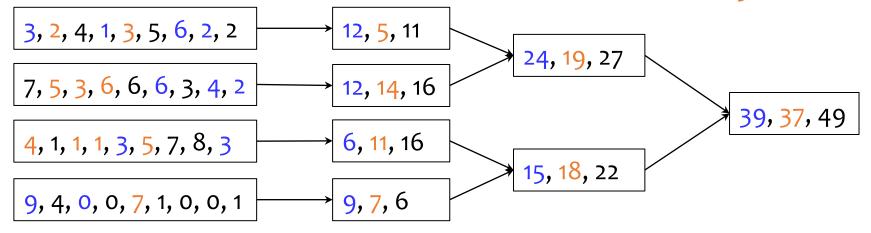
Other sort-based algorithms

- Union (set), difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- Grouping and aggregation
 - External merge sort, by group-by columns
 - Trick: produce "partial" aggregate values in each run, and combine them during merge

Example of Aggregation

Compute the sum of numbers for each color ••• using partial aggregate values <u>3 memory blocks availab</u>

3 memory blocks available Each block holds 3 numbers



Beside SUM, the same trick works for COUNT, MIN, MAX And also AVG, STDEV, with some little twists

Truly "holistic" aggregates?

- E.g., SUM(DISTINCT ...)
- Sort by the input expression (within each group)
- Example: SELECT SUM(DISTINCT B) FROM R GROUP BY A;
 - Sort R by (A, B)

But if there are multiple holistic aggregates with different input expressions, a single global order won't work — a group may need to be resorted

Instead of sorting, specialized algorithms exist for some aggregates, e.g.: median/quantile

What is next?

- Scan
 - Table scan
 - Selection, Duplicate-preserving projection
 - Nested-loop join
- Sort
 - External merge sort
 - Duplicate elimination, Grouping and Aggregation
 - Sort-merge join, Union (set), Difference, Intersection
- Hash
- Index