
Lecture 16:
Query Processing &

Optimization
CS348 Spring 2025:

Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

• Milestone 2 of group project
• Due today!

2

A query’s trip through the DBMS

3

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
 Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

Physical plan

• A complex query may involve multiple tables and
various query execution algorithms
• E.g., table scan, basic & block nested-loop join, index

nested-loop join, sort-merge join

• A physical plan for a query tells the DBMS query
processor how to execute the query
• A tree of physical plan operators
• Each operator implements a query processing algorithm
• Each operator accepts a number of input tables/streams

and produces a single output table/stream

4

(Recap) Physical plans

• Many physical plans for a single query

5

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

PROJECT (Group.name)

SORT-MERGE-JOIN (gid)

SCAN (Group)
SORT-MERGE-JOIN (uid)

SCAN (Member)

SCAN (User)

FILTER (name = “Bart”)

SELECT Group.name
FROM User, Member, Group
WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;

Outline
• Scan

• Table scan
• Selection, Duplicate-

preserving projection
• Nested-loop join

• Sort
• External merge sort
• Duplicate elimination,

Grouping and Aggregation
• Sort-merge join, Union

(set), Difference,
Intersection

• Hash
• Index

6

(abc, Book club)
(gov, student

govement)
…

(Alice, abc)
(Bart, boc)

…

MemberGroup

Blocks transferred
between main

memory and disk

Disk

Memory (Alice, abc)
(Bart, gov)

Notation and Assumption

• Relations: 𝑅, 𝑆
• Tuples: 𝑟, 𝑠
• Number of tuples: 𝑅 , 𝑆
• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆
• Number of memory blocks available: 𝑀
• Cost metric
• Number of I/O’s
• Memory requirement

• Not counting the cost of writing the result out
• Same for any algorithm!
• Consumed by subsequent operators

7

Hashing-based algorithms

8http://global.rakuten.com/en/store/citygas/item/041233/

Hash join

𝑅 ⋈!.#$%.& 𝑆
• Main idea
• Partition 𝑅 and 𝑆 by hashing their join attributes, and

then consider corresponding partitions of 𝑅 and 𝑆
• If 𝑟. 𝐴 and 𝑠. 𝐵 get hashed to different partitions, they

don’t join

9

Nested-loop join
considers all slots

1

2

1 2 3 4 5𝑅

𝑆
3

4

5

Hash join considers only
those along the diagonal!

Partitioning phase

• Partition 𝑅 and 𝑆 according to the same hash
function on their join attributes

10

𝑀 − 1 partitions of 𝑅

DiskMemory

𝑅

Same for 𝑆

… …
Each partition has a size of

B(R)/(M-1)

Probing phase

• Read in each partition of 𝑅, stream in the
corresponding partition of 𝑆, join
• Typically build a hash table for the partition of 𝑅

• Not the same hash function used for partition, of course!

11

Disk Memory

𝑅
partitions

𝑆
partitions

…
…

…load

stream For each 𝑆 tuple,
probe and join

Performance of (two-pass) hash join

• If hash join completes in two phases:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆

• 1st phase: read B(R) + B(S) into memory to partition and write
partitioned B(R) +B(S) to disk

• 2nd phase: read B(R) + B(S) into memory to merge and join

• Memory requirement:
• In the probing phase, we should have enough memory to fit

one partition of R: 𝑀 − 1 > ! "
#$%

• 𝑀 > 𝐵 𝑅 + 1
• We can always pick 𝑅 to be the smaller relation, so:

𝑀 > min 𝐵 𝑅 , 𝐵 𝑆 + 1

12

Generalizing for larger inputs

• What if a partition is too large for memory?
• Read it back in and partition it again!
• Re-partition 𝑂 log#𝐵 𝑅 times

13

Hash join versus SMJ

(Assuming two-pass)
• I/O’s: same
• Memory requirement: hash join is lower

• min 𝐵 𝑅 , 𝐵 𝑆 + 1 < 𝐵 𝑅 + 𝐵 𝑆

• Hash join wins when two relations have very different sizes

• Other factors
• Hash join performance depends on the quality of the hash

• Might not get evenly sized buckets
• SMJ can be adapted for inequality join predicates
• SMJ wins if 𝑅 and/or 𝑆 are already sorted
• SMJ wins if the result needs to be in sorted order

14

Hash join vs. SMJ: multi-pass

For both, let 𝐼 denote “input”

• # passes is O log3
& 4
3

	 = O log3𝐵 𝐼
• Assuming hash function is good enough and there is no

severe data skew

• Overall I/Os is O 𝐵 𝐼 ⋅ log3 𝐵 𝐼
• Assuming no external-memory mini nested loops

Compare with I/O lower bound on external permuting
• Rearranging 𝐵 𝐼 elements according to given

permutation takes Ω min 𝐼 , 𝐵 𝐼 ⋅ log3 𝐵 𝐼 I/Os

15

Duality of sort and hash

• Divide-and-conquer paradigm
• Sorting: physical division, logical combination
• Hashing: logical division, physical combination

• Handling very large inputs
• Sorting: multi-level merge
• Hashing: recursive partitioning

• I/O patterns
• Sorting: sequential write, random read (merge)
• Hashing: random write, sequential read (partition)

16

Other hash-based algorithms

• Union (set), difference, intersection
• More or less like hash join

• Duplicate elimination
• Check for duplicates within each partition/bucket

• Grouping and aggregation
• Apply the hash functions to the group-by columns
• Tuples in the same group must end up in the same

partition/bucket
• Keep a running aggregate value for each group

• Just like in the sorting case, this trick may not always work

17

Outline

• Scan
• Table scan
• Selection, Duplicate-preserving projection
• Nested-loop join

• Sort
• External merge sort
• Duplicate elimination, Grouping and Aggregation
• Sort-merge join, Union (set), Difference, Intersection

• Hash
• Hash join, union (set), difference, intersection, duplicate

elimination, grouping and aggregation

• Index
18

Index-based algorithms

19http://i1.trekearth.com/photos/28820/p2270994.jpg

Selection using index

• Equality predicate: 𝜎#$5 𝑅
• Use an ISAM, B+-tree, or hash index on 𝑅 𝐴

• Range predicate: 𝜎#65 𝑅
• Use an ordered index (e.g., ISAM or B+-tree) on 𝑅(𝐴)
• Hash index is not applicable

20

Index versus table scan

Situations where index clearly wins:
• Index-only queries which do not require retrieving

actual tuples
• Example: 𝜋$ 𝜎$%& 𝑅

• Primary index clustered according to search key
• One lookup leads to all result tuples in their entirety

21

Index versus table scan (cont’d)

BUT(!):
• Consider 𝜎#65 𝑅 and a secondary, non-clustered

index on 𝑅(𝐴)
• Need to follow pointers to get the actual result tuples
• Say that 20% of 𝑅 satisfies 𝐴 > 𝑣

• Could happen even for equality predicates
• I/O’s for index-based selection: lookup + 20% 𝑅
• I/O’s for scan-based selection: 𝐵 𝑅
• Table scan wins if a block contains more than 5 tuples!

22

Index nested-loop join

𝑅 ⋈!.#$%.& 𝑆
• Idea: use a value of 𝑅. 𝐴 to probe the index on 𝑆 𝐵
• For each block of 𝑅, and for each 𝑟 in the block:

 Use the index on 𝑆 𝐵 to retrieve 𝑠 with 𝑠. 𝐵 = 𝑟. 𝐴
 Output 𝑟𝑠
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ index	lookup
• Typically, the cost of an index lookup is 2-4 I/O’s
• Beats other join methods if 𝑅 is not too big

• And if the index on 𝑆 𝐵 is secondary, not too many 𝑆 rows join
with each 𝑟

• Better pick 𝑅 to be the smaller relation

• Memory requirement: 3
23

Zig-zag join using ordered indexes
𝑅 ⋈!.#$%.& 𝑆
• Idea: use the ordering provided by the indexes on 𝑅 𝐴

and 𝑆 𝐵 to eliminate the sorting step of sort-merge join
• Use the larger key to probe the other index

• Possibly skipping many keys that don’t match

24

B+-tree on 𝑅 𝐴

B+-tree on 𝑆 𝐵

1 2 3 4 7 9 18

1 7 9 11 12 17 19

(1)

(1) (2)

(2) (3)

(4)

(4) (5)

(5) (6)

Additional tricks
• Lots of index lookups across the key or address space?

• “Pre-condition” them to get better caching behavior
• Recall similar ideas we’ve seen earlier?

E.g.: 𝑅 ⋈!.#$%.& 𝑆: use index nested-loop
 with secondary index on 𝑆 𝐵
• Sort 𝑅 by 𝑅. 𝐴 ⇒ consecutive index lookups are more

likely to share search paths
• Don’t fetch joining 𝑆 rows one at a time; collect a bunch

of record ids, and do a “batch” retrieval from data file
• Option 1: sort record ids by their physical address
• Option 2 (PostgreSQL “bitmap index scan”): build a bitmap

indicating which data blocks hold relevant rows
• Filter out false positives once tuples are retrieved

• Both support efficient AND/OR of individually sarg’d conditions

25

Summary of techniques
• Scan

• Table scan
• Selection, Duplicate-preserving projection
• Nested-loop join

• Sort
• External merge sort
• Duplicate elimination, Grouping and Aggregation
• Sort-merge join, Union (set), Difference,

Intersection
• Hash

• Hash join, union (set), difference, intersection,
duplicate elimination, grouping and aggregation

• Index
• Selection, index nested-loop join, zig-zag join

26

Back to the trip

27

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
 Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

Query optimization

• Why query optimization?
• Many different ways of processing the same query

• A query can have multiple logical plans (in RA)
• A logical plan can have numerous physical plans

• Scan? Sort? Hash? Index?

• Different ways make different assumptions about data
have different performance

• Often, the goal is not getting the optimum plan, but
instead avoiding the horrible ones

28

1 second 1 hour1 minute

Any of these will do

Outline

• Search space
• What are the possible equivalent logical plans?
• For each logical plan, what are the possible physical

plans? (Lecture 16)

• Search strategy
• Rule-based strategy
• Cost-estimation-based strategy

29

Logical plan

• Nodes are logical operators (often relational
algebra operators)
• There are many equivalent logical plans

30

𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User
An equivalent plan: 𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid= Member.uid

𝜎name = “Bart”

Algebraic equivalences

• Apply algebraic equivalences in relational and/or
algebra to systematically transform a plan to new ones

FJoin reordering: × and ⋈ are associative and
commutative (except column ordering, which is unimportant)

31

⋈

⋈

𝑅 𝑆

𝑇

⋈

⋈

𝑆 𝑅

𝑇

⋈

⋈

𝑅 𝑇

𝑆

…= = =

More Algebraic equivalences
• Convert 𝜎8-× to/from ⋈8: 𝜎8 𝑅×𝑆 = 𝑅 ⋈8 𝑆

• Merge/split 𝜎’s: 𝜎8! 𝜎8"𝑅 = 𝜎8!∧8"𝑅

• Merge/split 𝜋’s: 𝜋:; 𝜋:"𝑅 = 𝜋:!∪:"𝑅

32

More algebraic equivalences

• Push down/pull up 𝜎:

 𝜎8∧8#∧8$ 𝑅 ⋈8% 𝑆 = 𝜎8#𝑅 ⋈8∧8% 𝜎8$𝑆
• 𝑝* involves only 𝑅;
• 𝑝+ involves only 𝑆;
• 𝑝 and 𝑝, involve both 𝑅 and 𝑆

33

𝜎-..01234-5.0123∧-..787%9.:∧-5.787%9.:

User

⋈-..;<=>-5.;<=

User

𝜌-! 𝜌-"

User

⋈-..;<=>-5.;<=∧-..01234-5.0123

User

𝜌-! 𝜌-"

𝜎-..787%9.: 𝜎-5.787%9.:

More algebraic equivalences
• Push down 𝜋:

 𝜋: 𝜎8𝑅 = 𝜋: 𝜎8 𝜋:∪:%𝑅
• 𝐿, is the set of columns referenced by 𝑝

☞Above works under both set and bag semantics
• For bag semantics, 𝜋 above preserves duplicates

34

𝜋0123,1@3

User

𝜎787%9.:∧1@3A.:

𝜋0123,1@3

User

𝜎787%9.:∧1@3A.:
𝜋0123,1@3,787

