Lecture 16:
Query Processing &
Optimization

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

* Milestone 2 of group project
* Due today!

A query’s trip through the DBMS

SELECT name, uid
SO‘L uery FROM Member, Group
<Query> WHERE Member.gid =
| Group.gid;
S2hWa_
<select-list> | <where-cond> Parse tree
/1 <fr/om-@> N\
" <table> <table> Validator T .
| | ¥ | name, uid
Member Group ’-Og"CC‘l(’ plan ?-/\/lember.gidzcroup.gid
- . X
, Optimizer 7\
PROJ EfT (name, gid) ‘ P ¥ Member Group
MERGE-JOIN (gid) Physical plan

7
SORTED) oo croupy I

SCAN (Member) Result

Physical plan

* A complex query may involve multiple tables and
various query execution algorithms

* E.g., table scan, basic & block nested-loop join, index
nested-loop join, sort-merge join

* A for a query tells the DBMS query
processor how to execute the query
* Atree of
* Each operator implements a query processing algorithm

* Each operator accepts a number of input tables/streams
and produces a single output table/stream

(Recap) Physical plans

SELECT Group.name

FROM User, Member, Group

WHERE User.name = 'Bart'

AND User.uid = Member.uid AND Member.gid = Group.gid;

PROJ EICT (Group.name) PROJECT (Group.name)
|
INDEX-N ESTED-L%)P-JOIN (gid) SORT-MERGE-JOIN (gid)
Index on Group(gid) /SCAN (Group)
INDEX-NESTED-LOOP-JOIN (uid) SORT-MERGE- JQ\I (uid)

N
Adex on Member(uid) FILTER (narme = “Bart”) SCAN (Member)
INDEX-SCAN (name = “Bart”)
|

|
Index on User(name) SCAN (User)

* Many physical plans for a single query

Outline

e Scan
e Table scan

* Selection, Duplicate-
preserving projection

* Nested-loop join

* Sort
* External merge sort
* Duplicate elimination,
Grouping and Aggregation
* Sort-merge join, Union
(set), Difference,
Intersection

e Hash
* Index

(Alice, abc)

Blocks transferred
between main
memory and disk

Member

(Alice, abc)
(Bart, boc)

(abc, Book club)
(gov, student

govement)

Notation and Assumption

e Relations: R,

* Tuples: 7,

* Number of tuples: |R|,
 Number of disk blocks: ,

* Number of memory blocks available:

* Cost metric
* Number of I/O’s
* Memory requirement

* Not counting the cost of writing the result out
* Same for any algorithm!
* Consumed by subsequent operators

Hashing-based algorithms

http://global.rakuten.com/en/store/citygas/item/041233/

Hash join

R Xpa=sp5 S
* Main idea

* Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and S

* If r.A and s. B get hashed to different partitions, they
don’t join

12 3,_1,2 4 5

-_—

Nested-loop join
considers all slots

Hash join considers only
those along the diagonal!

- -

w oA w ANy

Partitioning phase

* Partition R and S according to the same hash
function on their join attributes

Memory < Disk >
[]
- @
~
L]
L]

M — 1 partitions of R
SN—— -

Same for S

Each partition has a size of

B(R)/(M-1)

Probing phase

* Read in each partition of R, stream in the
corresponding partition of §, join

* Typically build a hash table for the partition of R
* Not the same hash function used for partition, of course!

R <

partitions (_

A <

partitions (_

< Disk
_/

Memory

stream

LN
-

P

For each S tuple,
= [probe and join

11

Performance of (two-pass) hash join

* If hash join completes in two phases:
e |/O’s:

* Memory requirement:
* In the probing phase, we should have enough memory to fit
one partition of R:

* We can always pick R to be the smaller relation, so:

Generalizing for larger inputs

* What if a partition is too large for memory?
* Read it back in and partition it again!
» Re-partition 0 (log,,B(R)) times

Hash join versus SMJ

(Assuming two-pass)
* |/O’s: same
* Memory requirement: hash join is lower

. \/min(B(R),B(S)) +1 < /B(R) + B(S)
* Hash join wins when two relations have very different sizes

* Other factors
* Hash join performance depends on the quality of the hash
* Might not get evenly sized buckets
* SMJ can be adapted for inequality join predicates
* SMJ wins if R and/or § are already sorted
* SMJ wins if the result needs to be in sorted order

Hash join vs. SMJ: multi-pass

For both, let I denote “input”
B(I)

* # passesis O (logM (7)) = O(logMB(I))

* Assuming hash function is good enough and there is no
severe data skew

* Overall I/Os is O()

* Assuming no external-memory mini nested loops
Compare with I/O lower bound on

* Rearranging B(I) elements according to given
permutation takes Q(min(]!|,)) 1/Os

Duality of sort and hash

* Divide-and-conquer paradigm
* Sorting: physical division, logical combination
* Hashing: logical division, physical combination
* Handling very large inputs
* Sorting: multi-level merge
* Hashing: recursive partitioning
* /O patterns

* Sorting: sequential write, random read (merge)
* Hashing: random write, sequential read (partition)

Other hash-based algorithms

* Union (set), difference, intersection
* More or less like hash join

* Duplicate elimination
* Check for duplicates within each partition/bucket

* Grouping and aggregation
* Apply the hash functions to the group-by columns

* Tuplesin the same group must end up in the same
partition/bucket

* Keep a running aggregate value for each group
* Just like in the sorting case, this trick may not always work

Outline

* Scan
* Table scan
* Selection, Duplicate-preserving projection
* Nested-loop join

* Sort
* External merge sort
* Duplicate elimination, Grouping and Aggregation
* Sort-merge join, Union (set), Difference, Intersection
* Hash
* Hash join, union (set), difference, intersection, duplicate
elimination, grouping and aggregation

* Index

18

Index-based algorithms

|/ ot AGENTS g
LN TY |)

http://il.trekearth.com/photos/28820/p2270994.jpg

19

Selection using index

* Equality predicate:
* Use an ISAM, B*-tree, or hash index on R(A)

* Range predicate:
e Use an index (e.g., ISAM or B*-tree) on R(A)
* Hash index is not applicable

Index versus table scan

Situations where index clearly wins:

which do not require retrieving
actual tuples

* Example:

* Primary index clustered according to search key
* One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

* Consider and a secondary, non-clustered
index on R(A)
* Need to follow pointers to get the actual result tuples
* Say that 20% of R satisfies A > v
* Could happen even for equality predicates
* |/O’s for index-based selection:
* |/O’s for scan-based selection:
* Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

* Idea: use a value of R. A to probe the index on S(B)

* For each block of R, and for each r in the block:
Use the index on S(B) to retrieve s withs.B =1.4
Output rs

¢ |/O’s:
 Typically, the cost of an index lookup is 2-4 1/O’s

* Beats other join methods if |R| is not too big

* And if the index on S(B) is secondary, not too many S rows join
with each r

* Better pick R to be the smaller relation

* Memory requirement:

Zig-zag join using ordered indexes

R Mp =55 S

* Idea: use the ordering provided by the indexes on R(A)
and S(B) to eliminate the sorting step of sort-merge join

* Use the larger key to probe the other index
* Possibly skipping many keys that don’t match

W) ey @) g e qq 12 17 '@ 19

24

Additional tricks

* Lots of index lookups across the key or address space?

* “Pre-condition” them to get better caching behavior
e Recall similar ideas we’ve seen earlier?

E.g.: R MWy 4_gp S:useindex nested-loop
with secondary index on S(B)

* Sort R by R. A = consecutive index lookups are more
likely to share search paths

* Don’t fetch joining S rows one at a time; collect a bunch
of record ids, and do a “batch” retrieval from data file
* Option 1: sort record ids by their physical address
* Option 2 (PostgreSQL “bitmap index scan”): build a bitmap
indicating which data blocks hold relevant rows
* Filter out false positives once tuples are retrieved

* Both support efficient AND/OR of individually sarg’d conditions

Summary of techniques

OT1OTON
00010100010

* Scan

* Table scan

* Selection, Duplicate-preserving projection
* Nested-loop join

* Sort

* External merge sort

* Duplicate elimination, Grouping and Aggregation

* Sort-merge join, Union (set), Difference,
Intersection

e Hash

 Hash join, union (set), difference, intersection,
duplicate elimination, grouping and aggregation

* Index
* Selection, index nested-loop join, zig-zag join

26

Back to the trip

SELECT name, uid
SO‘L uery FROM Member, Group
<Query> WHERE Member.gid =
| Group.gid;
S2hWa_
<select-list> | <where-cond> Parse tree
/1 <fr/om-@> N\
" <table> <table> Validator T .
| | ¥ | name, uid
Member Group LOg"CC‘l(’ plan ?Member.gid:Group.gid
- . X
, Optimizer 7\
PROJ EfT (name, gid) ‘ P ¥ Member Group
MERGE-JOIN (gid) Physical plan

7
SORTED) oo croupy I

SCAN (Member) Result

27

Query optimization

* Why query optimization?
* Many different ways of processing the same query

* A query can have multiple logical plans (in RA)

* Alogical plan can have numerous physical plans
* Scan? Sort? Hash? Index?

 Different ways make different assumptions about data
have different performance

* Often, the is not getting the optimum plan, but
instead avoiding the horrible ones

/ Any of these will do

—+ A - — —

1second 1 minute 1 hour

Outline

* Search space
* What are the possible equivalent logical plans?

* For each logical plan, what are the possible physical
plans?

* Search strategy
* Rule-based strategy
* Cost-estimation-based strategy

Logical plan

* Nodes are operators (often relational
algebra operators)

* There are many equivalent logical plans

7|TGroup.name

OI-User.name:“Bart” A User.uid = Member.uid A Member.gid = Group.gid

X
7 N\
J % N Group T[Group name

User Member WMember.gid = Group.gid
/ Group

X User uid= Member.uid

/ Member

Io-name = “Bart”

User

Algebraic equivalences

* Apply algebraic equiva
algebra to systematica

%~ Join reordering: X and

ences in relational and/or
ly transform a plan to new ones

X are associative and

commutative (except column ordering, which is unimportant)

AN A
VANMVANEERAN

More Algebraic equivalences

* Convert g,,-X toffrom ,;:
* Merge/split o’s:

* Merge/split r’s:

More algebraic equivalences

* Push down/pull up o

* pp involves only R;
* pginvolves only §;
* pand p’ involve both R and S

O-Ul.name:U2.name/\U1.p0p>0.8AU2.p0p>0.8
I

X ; ;
{1.uld#—'U2.Uld X % luid#U2.uidAUl.name=U2.name
Pifl pIUz OU1.pop>0.8 Oy2.pop>0.8
| |
User User Pu. Pu
1 2
| |

User User

More algebraic equivalences

e Push down m:

L' is the set of columns referenced by p

Tname,age Tname,age
I I
Upop>0.8/\age<18 O-pop>0.8Aage<18
I I
User TTname,age,pop
I
User

w-Above works under both set and bag semantics
* For bag semantics, ™ above preserves duplicates

