Lecture 16: Query Processing & Optimization

CS348 Spring 2025: Introduction to Database Management

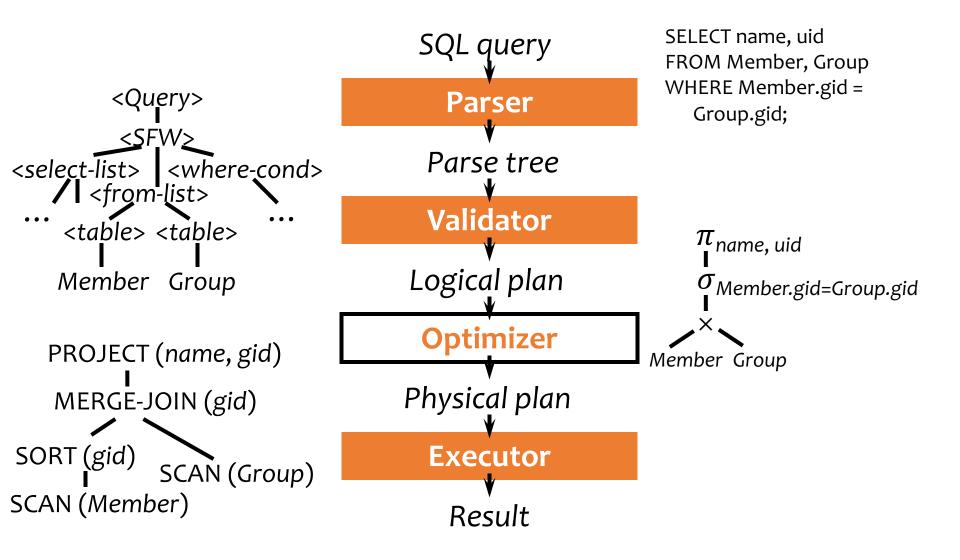
Instructor: Xiao Hu

Sections: 001, 002, 003

Announcements

- Milestone 2 of group project
 - Due today!

A query's trip through the DBMS



Physical plan

- A complex query may involve multiple tables and various query execution algorithms
 - E.g., table scan, basic & block nested-loop join, index nested-loop join, sort-merge join
- A physical plan for a query tells the DBMS query processor how to execute the query
 - A tree of physical plan operators
 - Each operator implements a query processing algorithm
 - Each operator accepts a number of input tables/streams and produces a single output table/stream

(Recap) Physical plans

```
SELECT Group.name
FROM User, Member, Group
WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;
```

```
PROJECT (Group.name)
INDEX-NESTED-LOOP-JOIN (gid)

Index on Group(gid)

INDEX-NESTED-LOOP-JOIN (uid)

INDEX-NESTED-LOOP-JOIN (uid)

SORT-MERGE-JOIN (uid)

SORT-MERGE-JOIN (uid)

FILTER (name = "Bart")

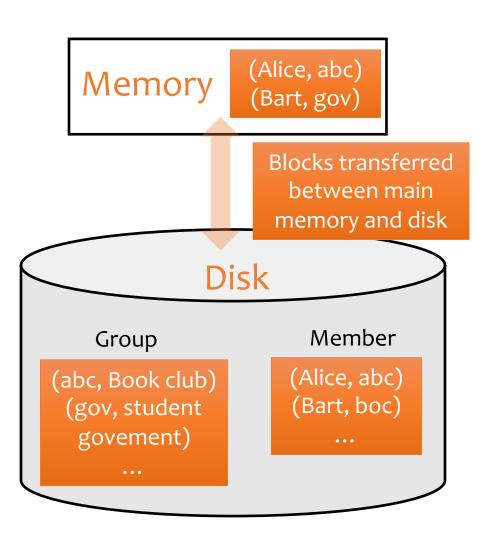
SCAN (Member)

SCAN (User)
```

Many physical plans for a single query

Outline

- Scan
 - Table scan
 - Selection, Duplicatepreserving projection
 - Nested-loop join
- Sort
 - External merge sort
 - Duplicate elimination, Grouping and Aggregation
 - Sort-merge join, Union (set), Difference, Intersection
- Hash
- Index



Notation and Assumption

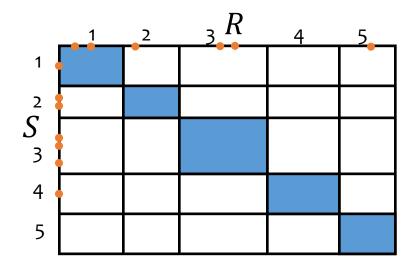
- Relations: R, S
- Tuples: *r* , *s*
- Number of tuples: |R|, |S|
- Number of disk blocks: B(R), B(S)
- Number of memory blocks available: M
- Cost metric
 - Number of I/O's
 - Memory requirement
- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Consumed by subsequent operators

Hashing-based algorithms

Hash join

$$R\bowtie_{R.A=S.B} S$$

- Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If r. A and s. B get hashed to different partitions, they don't join

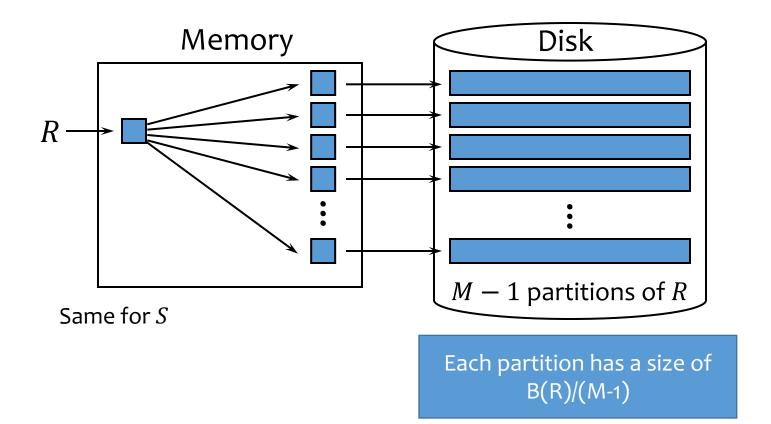


Nested-loop join considers all slots

Hash join considers only those along the diagonal!

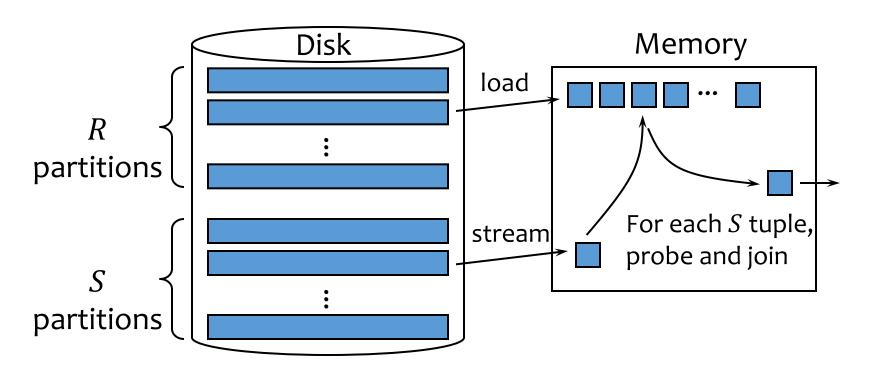
Partitioning phase

 Partition R and S according to the same hash function on their join attributes



Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!



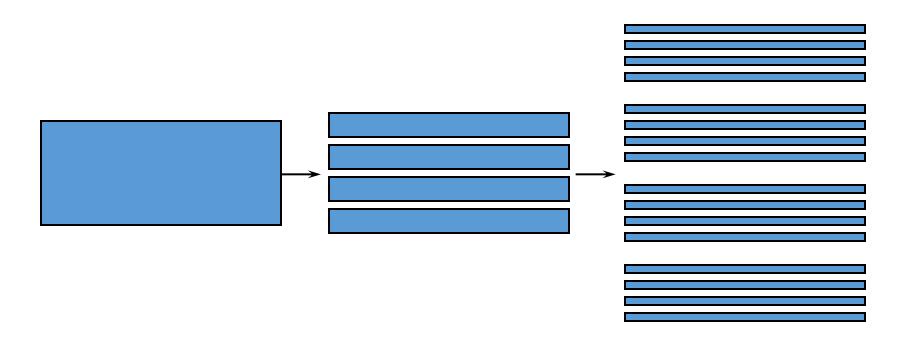
Performance of (two-pass) hash join

- If hash join completes in two phases:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - 1st phase: read B(R) + B(S) into memory to partition and write partitioned B(R) +B(S) to disk
 - 2nd phase: read B(R) + B(S) into memory to merge and join
 - Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M-1>\frac{B(R)}{M-1}$
 - $M > \sqrt{B(R)} + 1$
 - We can always pick *R* to be the smaller relation, so:

$$M > \sqrt{\min(B(R), B(S))} + 1$$

Generalizing for larger inputs

- What if a partition is too large for memory?
 - Read it back in and partition it again!
 - Re-partition $O(\log_M B(R))$ times



Hash join versus SMJ

(Assuming two-pass)

- I/O's: same
- Memory requirement: hash join is lower

•
$$\sqrt{\min(B(R), B(S))} + 1 < \sqrt{B(R) + B(S)}$$

- Hash join wins when two relations have very different sizes
- Other factors
 - · Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if R and/or S are already sorted
 - SMJ wins if the result needs to be in sorted order

Hash join vs. SMJ: multi-pass

For both, let *I* denote "input"

- # passes is $O\left(\log_M\left(\frac{B(I)}{M}\right)\right) = O\left(\log_M B(I)\right)$
 - Assuming hash function is good enough and there is no severe data skew
- Overall I/Os is $O(B(I) \cdot \log_M B(I))$
 - Assuming no external-memory mini nested loops

Compare with I/O lower bound on external permuting

• Rearranging B(I) elements according to given permutation takes $\Omega(\min(|I|, B(I) \cdot \log_M B(I)))$ I/Os

Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- Handling very large inputs
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)

Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- Grouping and aggregation
 - Apply the hash functions to the group-by columns
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group
 - Just like in the sorting case, this trick may not always work

Outline

Scan

- Table scan
- Selection, Duplicate-preserving projection
- Nested-loop join

Sort

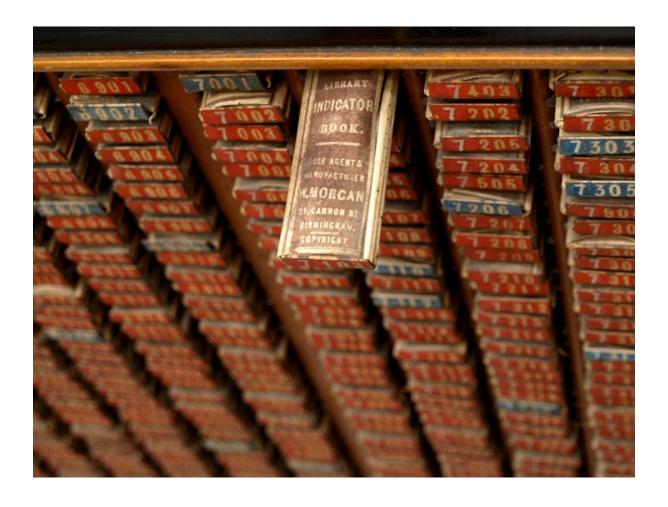
- External merge sort
- Duplicate elimination, Grouping and Aggregation
- Sort-merge join, Union (set), Difference, Intersection

Hash

• Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation

Index

Index-based algorithms



Selection using index

- Equality predicate: $\sigma_{A=v}(R)$
 - Use an ISAM, B+-tree, or hash index on R(A)
- Range predicate: $\sigma_{A>v}(R)$
 - Use an ordered index (e.g., ISAM or B+-tree) on R(A)
 - Hash index is not applicable

Index versus table scan

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A(\sigma_{A>v}(R))$
- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont'd)

BUT(!):

- Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on R(A)
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies A>v
 - Could happen even for equality predicates
 - I/O's for index-based selection: lookup + 20% |R|
 - I/O's for scan-based selection: B(R)
 - Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

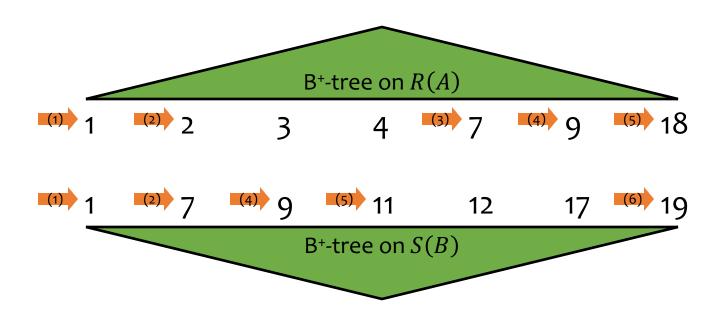
$R\bowtie_{R.A=S.B} S$

- Idea: use a value of R.A to probe the index on S(B)
- For each block of R, and for each r in the block: Use the index on S(B) to retrieve s with s.B = r.AOutput rs
- I/O's: B(R) + |R| · (index lookup)
 - Typically, the cost of an index lookup is 2-4 I/O's
 - Beats other join methods if |R| is not too big
 - And if the index on S(B) is secondary, not too many S rows join with each r
 - Better pick R to be the smaller relation
- Memory requirement: 3

Zig-zag join using ordered indexes

$R\bowtie_{R.A=S.B} S$

- Idea: use the ordering provided by the indexes on R(A) and S(B) to eliminate the sorting step of sort-merge join
- Use the larger key to probe the other index
 - Possibly skipping many keys that don't match



Additional tricks

- Lots of index lookups across the key or address space?
 - "Pre-condition" them to get better caching behavior
 - Recall similar ideas we've seen earlier?

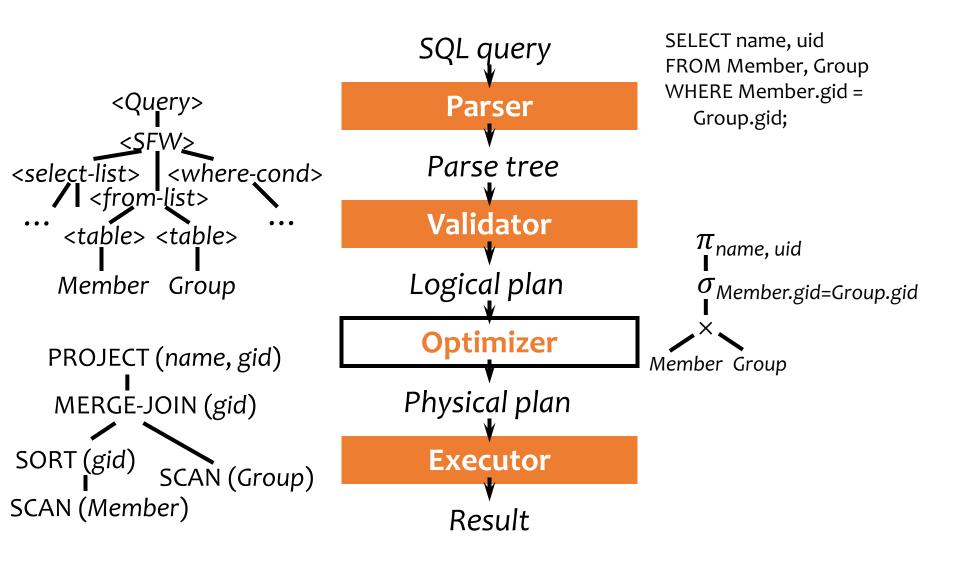
E.g.: $R \bowtie_{R.A=S.B} S$: use index nested-loop with secondary index on S(B)

- Sort R by $R.A \Rightarrow$ consecutive index lookups are more likely to share search paths
- Don't fetch joining S rows one at a time; collect a bunch of record ids, and do a "batch" retrieval from data file
 - Option 1: sort record ids by their physical address
 - Option 2 (PostgreSQL "bitmap index scan"): build a bitmap indicating which data blocks hold relevant rows
 - Filter out false positives once tuples are retrieved
 - Both support efficient AND/OR of individually sarg'd conditions

Summary of techniques

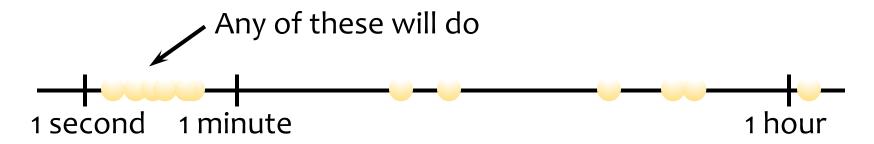
- Scan
 - Table scan
 - Selection, Duplicate-preserving projection
 - Nested-loop join
- Sort
 - External merge sort
 - Duplicate elimination, Grouping and Aggregation
 - Sort-merge join, Union (set), Difference, Intersection
- Hash
 - Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Index
 - Selection, index nested-loop join, zig-zag join

Back to the trip



Query optimization

- Why query optimization?
 - Many different ways of processing the same query
 - A query can have multiple logical plans (in RA)
 - A logical plan can have numerous physical plans
 - Scan? Sort? Hash? Index?
 - Different ways make different assumptions about data have different performance
- Often, the goal is not getting the optimum plan, but instead avoiding the horrible ones



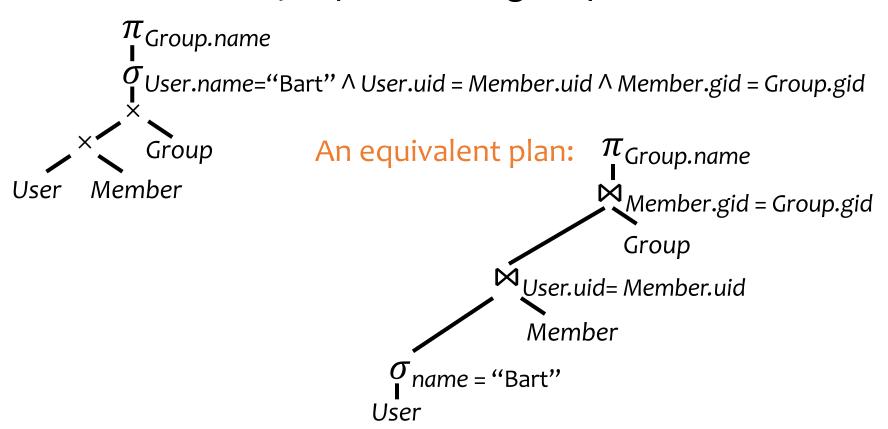
Outline

- Search space
 - What are the possible equivalent logical plans?
 - For each logical plan, what are the possible physical plans? (Lecture 16)

- Search strategy
 - Rule-based strategy
 - Cost-estimation-based strategy

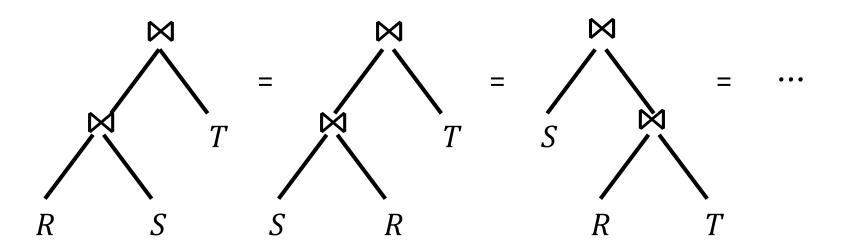
Logical plan

- Nodes are logical operators (often relational algebra operators)
- There are many equivalent logical plans



Algebraic equivalences

- Apply algebraic equivalences in relational and/or algebra to systematically transform a plan to new ones



More Algebraic equivalences

• Convert σ_p -× to/from \bowtie_p : $\sigma_p(R \times S) = R \bowtie_p S$

• Merge/split σ 's: $\sigma_{p_1}(\sigma_{p_2}R) = \sigma_{p_1 \wedge p_2}R$

• Merge/split π 's: $\pi_{L_1}(\pi_{L_2}R) = \pi_{L_1 \cup L_2}R$

More algebraic equivalences

• Push down/pull up σ :

$$\sigma_{p \wedge p_R \wedge p_S}(R \bowtie_{p'} S) = (\sigma_{p_R} R) \bowtie_{p \wedge p'} (\sigma_{p_S} S)$$

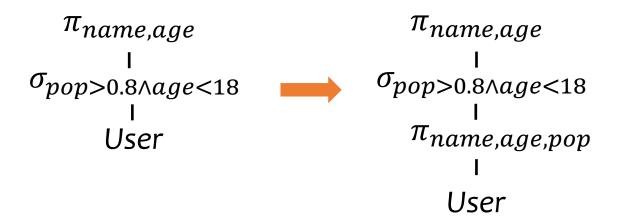
- p_R involves only R;
- p_S involves only S;
- p and p' involve both R and S

More algebraic equivalences

• Push down π :

$$\pi_L(\sigma_p R) = \pi_L(\sigma_p(\pi_{L \cup L'} R))$$

• L' is the set of columns referenced by p



Above works under both set and bag semantics

• For bag semantics, π above preserves duplicates